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Flapping Flight for Biomimetic Robotic Insects:
Part II—Flight Control Design

Xinyan Deng, Member, IEEE, Luca Schenato, Member, IEEE, and S. Shankar Sastry, Fellow, IEEE

Abstract—In this paper, we present the design of the flight
control algorithms for flapping wing micromechanical flying
insects (MFIs). Inspired by the sensory feedback and neuromotor
structure of insects, we propose a similar top-down hierarchical
architecture to achieve high performance despite the MFIs’ lim-
ited on-board computational resources. The flight stabilization
problem is formulated as high-frequency periodic control of an
underactuated system. In particular, we provide a methodology
to approximate the time-varying dynamics caused by the aerody-
namic forces with a time-invariant model using averaging theory
and a biomimetic parametrization of the wing trajectories. This
approximation leads to a simpler dynamical model that can be
identified using experimental data from the on-board sensors and
the voltage inputs to the wing actuators. The overall control law is
a periodic proportional output feedback. Simulations, including
sensor and actuator models, demonstrate stable flight in hovering
mode.

Index Terms—Averaging, biomimetic, flapping flight, micro-
aerial vehicles (MAVs), periodic control.

1. INTRODUCTION

HE recent interest in micro-aerial vehicles (MAVs) [1],
Twhich is largely motivated by the need for aerial re-
connaissance robots inside buildings and confined spaces,
has galvanized the development of inch-size flapping-wing
MAVs that could mimic insect flight. This is a challenging
endeavor for several reasons. First, aerodynamics for inch-size
flapping robots differ substantially from manmade fixed or
rotary-winged vehicles [2]. Second, size constraints forbid the
use of rotary electric motors and commercial inertial naviga-
tion systems (INSs), global positioning systems (GPSs), and
current cameras. Finally, a flapping frequency beyond 100 Hz
requires sensors and processing algorithms with bandwidth and
sensitivity at least one order of magnitude higher than those
usually found in today’s aircrafts. Nonetheless, recent techno-
logical advances, together with a better understanding of insect
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aerodynamics and mechanisms, have promoted projects aimed
at the design of micromechanical flying insects (MFIs) [3].

The goal of this paper is to develop a general framework to
design a control unit for MFIs which would enable them to ac-
complish complex autonomous tasks such as searching, surveil-
lance, and monitoring. This paper builds upon a companion
paper [4], in which comprehensive modeling of MFI aerody-
namics, body dynamics, sensors, and electromechanical actua-
tion is presented together with a list of references to relevant
research. In this paper, we focus on the control aspects of flap-
ping flight. In particular, we propose a hierarchical architecture
for the control unit that mimics the sensory feedback and neu-
romotor structure of insects to achieve high performance while
satisfying MFIs physical and computational limitations. One of
the main contributions of this paper is to approximate the time-
varying (TV) dynamics of insect flight caused by the flapping
wings with a time-invariant (TT) system based on which feed-
back controllers can be designed. This approximation relies on
two ideas that can be formalized within the framework of high-
frequency control theory. The first idea is that the frequency of
the aerodynamic forces acting on the insect is much higher than
the bandwidth of the body dynamics, therefore, only the mean
aerodynamic forces and torques over one wingbeat affect the in-
sect dynamics. The second idea is to parameterize the wing tra-
jectory using biologically inspired wing kinematic parameters
which affect the distribution of aerodynamic forces within one
wingbeat, thus modulating the total forces and torques acting
on the insect. These parameters appear as virtual inputs in the
TI approximation of flight dynamics. Finally, we show how the
parameters of the TI approximation can be identified directly
from sensors measurements and actuators input voltages ob-
tained from experiments from the original TV system. This ap-
proach is particularly suitable for flapping flight since it does not
require the knowledge of exact aerodynamics models, which are
particularly complex. Also, it provides a model for uncertainty
caused by sensor and actuator nonlinearities and external distur-
bances that can be used to design robust controllers.

The paper is organized as follows. In Section II, we briefly
review biological literature about insect flight control mecha-
nisms, focusing on the interaction between the sensory system
and the neuromotor architecture. In Section III, the hierarchical
architecture of flight control observed in insects and the heli-
copter attitude-based navigation are used as a model for the de-
sign of an equivalent control system for MFIs. In Section IV, we
highlight analogies and differences between flapping flight and
helicopter flight. In Section V, we propose a formal approach to
approximate the TV insect dynamics with TI invariant dynamics
based on averaging theory and wing trajectory parametrization.
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Section VI presents the design of the input voltage to the ac-
tuators that is required to track a desired wing trajectory. In
Section VII, we model insect dynamics as a discrete-time (DT)
dynamical system where the inputs are the kinematic parame-
ters defined in the previous section. Closed-loop identification
is then implemented to estimate the DT system. The identified
model is then used to design linear-quadratic regulator (LQR)-
based feedback laws for hovering. Finally, in Section VIII, con-
clusions and future research directions are presented.

II. INSECT FLIGHT SENSORS AND CONTROL MECHANISMS

Flies have inhabited our planet for over 300 million years,
and today they account for more than 125 000 different species,
so that, by now, roughly every tenth known species is a fly
[5]. This evolutionary success might spring from their insuper-
able maneuverability and agility to survive, which enable them,
for example, to chase mates at turning velocities of more than
3000° s~! with delay times of less than 30 ms.

The extraordinary maneuverability exhibited by flying insects
is the result of a sophisticated neuromotor control system com-
bined with highly specialized sensors. These sensors comprise
the pressure sensilla, the halteres, the ocelli, and the compound
eyes.

Pressure force sensilla are present along the wing surface, the
wing base, the halteres, and other parts of the body. Although
their functionality in flight control is not clear, they might play
an important role in estimating the instantaneous air flow around
the wing and in controlling the wing trajectory [6].

The halteres, which are two oscillating club-shaped appen-
dices, are the biological equivalence of a gyroscope, and they
are used to estimate the body angular velocities [7].

The ocelli, which is a sensor system composed of three wide-
angle photoreceptors oriented in a tetrahedron configuration,
can estimate insect orientation relative to the horizon by com-
paring the light intensity from different regions of the sky [8].

The compound eyes serve the purpose of estimating large-
field optical flow, small-field object fixation, and object recog-
nition [9]-[11]. The large-field optical flow estimated from the
compound eyes can provide information about the orientation,
the angular velocity, and the linear velocity. The compound eyes
combined with ocelli and halteres play the role of the INS in in-
sect flight and can guarantee good performance [12], [13]. Fur-
thermore, compound eyes can also perform specialized visual
processing for object fixation and landmark recognition, which
is used to navigate the environment and estimate proximity of
obstacles and targets.

A more detailed description for these sensors from a flight
control perspective can be found in [4] and [13] and in the ref-
erences therein.

At present, little is known about the flight control mechanisms
and neuromotor physiology in insects [5], [14]-[16]. Experi-
mental evidence suggests the existence of at least two levels
of control, as shown in Fig. 1. At the lower level, the halteres
and the ocelli control the wing muscles directly in order to keep
stable flight orientation. This level of control seems to be re-
active, since it mediates corrective reflexes to compensate for
external disturbances and to maintain a stable flight posture.
At the higher level, the brain, stimulated by visual and physi-
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Fig. 1. Neuromotor control physiology in flying insect.

ological stimuli, plays the role of a navigation planner, which
plans the flight trajectory based on its ultimate goal, such as
foraging or chasing a mate. Different from the haltere—ocelli
system, the visual system is not directly connected to the wing
muscles. Instead, it provides excitatory input to the haltere mus-
cles [14]. Therefore, this level of control indirectly affects the
flight behavior by biasing the motion of the halteres, thus cre-
ating an external disturbance for which the lower level of con-
trol would try to compensate. This hierarchical architecture in
insects might reflect the evolution of the halteres from the hind-
wings; neurons from the visual system were connected to the
muscles of both the forewings and hindwings and continued to
do so when the latter evolved into halteres; neurons intercon-
nected the forewing and hindwing pairs so as to permit their syn-
chronization and continued to do so when the hindwings were
reduced to halteres. Therefore, a hierarchical architecture ap-
pears to be an efficient solution to resolve the conflict between
flight stability reflexes and goal-orientated maneuvers. In fact,
a similar structure is also present between the vestibular-ocular
reflexes and active head rotation in vertebrates [17]. This typical
biological neuromotor control architecture is shown in the left
side of Fig. 2. Without some appropriate inhibiting mechanism,
the haltere-mediated equilibrium reflexes would always counter
goal-oriented motions. To resolve this potential conflict, the ner-
vous system must contain the means of attenuating equilibrium
reflexes during the generation of controlled maneuvers.

Another sublevel, as part of the reactive control system,
might be present and associated with the pressure sensors
which innervate the wings and the haltere. This bottom-level
reactive control can adjust wing motion within a single wing-
beat to improve aerodynamic efficiency and compensate for
local turbulence [18].

The hierarchical structure of neuromotor control in true in-
sects has been adopted as a guiding model for the design of the
control unit for MFIs, as described in Section III.

III. HIERARCHICAL CONTROL ARCHITECTURE

The hierarchical architecture, which is partially inspired by
insects and autonomous aerial robots research [19], decomposes
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Fig. 2. Design architecture for the control unit of the MFI compared with the neuromotor control architecture present in most animals.

the original flight control problem into a set of hierarchical mod-
ules, each responsible for a specific task. This way, the con-
trollers in each module can be designed independently of those
on higher levels, thus allowing the possibility to incrementally
build more and more articulated control structures. Fig. 2 shows
the architecture proposed for the MFI control unit. It is possible
to identify three main levels: the navigation planner, the flight
mode stabilizer, and the wing trajectory controller. The top level
is a voluntary one, since planning is determined by the MFI’s
goal, and the two lower levels are more reactive since the pur-
pose of the flight mode stabilizers and the wing kinematic gener-
ator is to maintain the desired flight posture and the desired wing
trajectory in the presence of external disturbances, respectively.
Each of these three levels in the control unit receives specific
sensory information from different sensors.

At the top level of the control unit, there is the navigation
planner. Besides sensory input from the visual system, this unit
can receive commands from a communication link and informa-
tion from application-specific sensors such as chemical or tem-
perature sensors. The purpose of this module is to choose a se-
quence of appropriate flight modes for the flight-mode stabilizer
level, which enables the MFI to safely navigate the environment
and achieve the desired task such as territory exploration, target
localization, and tracking.

The middle level is the flight mode stabilizer, which is re-
sponsible for stabilizing different flight modes available to the
MFI, such as takeoff, hovering, cruising, steer left, steer right,
climb, dive, and land. Each flight mode is achieved by a dedi-
cated controller that uses as inputs the signals from the halteres,
the ocelli, the large-field optical flow estimates, and a magnetic
compass. Based on this information, the controller chooses the
appropriate values for the desired torques and forces that must
be applied to MFI body to compensate for possible disturbances
and to maintain the desired flight mode. The desired torques and
forces are then mapped directly into the corresponding wing tra-
jectory for the next wingbeat, as shown in Section V-C.

The bottom level is the wing trajectory controller, which
is responsible for generating the electrical signals for the
actuators in order to track the desired wing motion generated
by the flight-mode stabilizer module. The set of possible wing
trajectories is parameterized according to some biokinematic
parameters, as described in Section V-C. These parameters are
chosen based on biomimetic principles, i.e., by changing them,
it is possible to replicate most of the wing trajectories observed
in insects. The most important biokinematic parameters are
the stroke angle amplitude and offset, timing of rotation, mean
angle of attack, and upstroke-to-downstroke wing speed ratio.
The active change of these parameters by insects have been
observed to be directly correlated to specific maneuvers and
flight modes [20]. Then, every wing trajectory is mapped to the
corresponding actuator voltages via another map, as described
in Section VI. The wing trajectory controller receives input
information from force sensors placed at the wing’s base.
This sensory information can be directly used to estimate the
instantaneous position and velocity of the wing, thus improving
wing motion control through feedback.

IV. INSECT VERSUS HELICOPTER FLIGHT

Similar to aerial vehicles that are based on rotary wings such
as helicopters, flying insects control their flight by controlling
their attitude and the magnitude of the vertical thrust [20]. Posi-
tion and velocity control is achieved via attitude control; in fact;
forces acting on a plane parallel to the ground can be generated
by tilting and banking the body. For example, pitching down
would result in a forward thrust, while rolling sideward would
result in a lateral acceleration. Altitude control is achieved via
mean lift modulation, for example, by increasing the vertical
force it would result in an upward acceleration and vice versa.

However, there are some particular differences that prevent
one from directly applying successful flight control techniques
developed for helicopters to insect flight [21]. The first differ-
ence is the lateral asymmetry of helicopter flight. For example,
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the spinning of the rotor blade induces a reaction yaw torque
on the helicopter body that would make the body rotate in the
opposite direction if not compensated by the tail rotor. On the
other hand, the tail rotor generates a lateral thrust that needs to
be compensated by tilting the helicopter body sideways. This
problem is not present in insect flight since the wings oscillate
almost symmetrically on the opposite side of the insect body,
therefore, lateral inertial forces cancel out over the course of a
wingbeat. Moreover, when the helicopter moves forward, the
blade is advancing on one side and retreating on the opposite
side; the blade on the advancing side experiences a larger flow,
while the one on the retreating side experiences a smaller or
even reverse flow, thus causing lateral imbalance and instability,
called dynamic stall, which needs to be actively compensated
[22]. In insect flight, however, the motion of two wings is very
symmetric, and coupling between lateral and longitudinal dy-
namics is probably less pronounced.

Another difference is the highly TV nature of the aerody-
namic forces in insect flight. As shown in Fig. 5, the aerody-
namic forces and torques generated by the wings can change
substantially during a wingbeat. However, the wing motions
cannot change dramatically from one wingbeat to the next, since
the wings need to oscillate to maintain sufficient lift to sustain
the insect weight. Moreover, in insect flight, the two wings can
be actively controlled to follow asymmetric trajectories. This
allows the insects to generate large angular accelerations by
modulating the distribution of the aerodynamic forces within
a wingbeat without substantially affecting the mean lift gener-
ation. The dependence of torque generation on wing motion in
insects has also recently been considered in [23] and [24].

Finally, it is not clear whether the insect forward flight and
hovering flight dynamics are intrinsically stable. Recent theoret-
ical [25] and experimental [26] research by Taylor et al. on for-
ward flight in desert locusts and numerical analysis by Sun et al.
[27] on hovering flight in bumblebees suggest that the insect lon-
gitudinal flight dynamics possess some unstable modes. How-
ever, these modes have a timescale much slower than the wing-
beat frequency, therefore it is reasonable to propose that they
can be actively compensated for by the flight control system.

These similarities and differences lead us to consider the
following strategy when designing a robust stabilizing hovering
controller. First, we will model the insect dynamics as a DT
linear TT (DTLTI) system based on the average forces and
torques over a wingbeat. This approach is based on high-fre-
quency control theory that guarantees good approximation
error between the original TV system and averaged system,
assuming that the wingbeat frequency is sufficiently high [28].
Moreover, the design for the controller is based on an MFI
dynamics model obtained through an identification procedure
that includes the approximation errors due to the TV nature of
the dynamics.

Second, we parameterize the wing kinematics with four pa-
rameters such that they can be mapped uniquely into the three
mean torques (i.e., roll, pitch, and yaw) and mean lift. This ap-
proach allows direct control of the torques and lift generation,
thus simplifying the control design for the attitude and altitude
of the MFI. The dynamics of the insect is then linearized about
the hovering condition and the original multiple-input multiple-
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output (MIMO) system were decoupled into four single-input
single-output (SISO) subsystems. Finally, the controller is based
on robust output feedback using LQR design.

V. HIGH-FREQUENCY INSECT FLIGHT CONTROL

A. Insect Dynamics

As shown in [4], the insect dynamics can be written as

6 = (IW)~! [Tf; () — WO x TWE — IW@}

. b . 1
p=-—p—g+—Rfxt) (1
m m

where 72 € R? and f’ € R? are the torque and force vectors
generated by wing aerodynamics applied to the insect center of
mass. The vector © = [n  ]7 represents the ZY X Euler an-
gles (i.e., roll, pitch, and yaw) relative to the inertia coordinates,
W = W(O) is the transformation matrix from body angular
velocity w” to Euler angular velocity in inertia frame 0, ie.
0 = Ww?, 7 is the insect moment of inertia relative to the
body frame, p is the position of the center of mass relative to
the inertia frame, g = [0 0 — g]7 is the gravity vector, b is the
linear damping coefficient, and R = e*¥¢¥%¢®" is the rotation
matrix. This notation is commonly found in spacecraft and he-
licopter dynamics literature [21], [29].

The wrench, i.e., the forces and torques applied to the center
of mass, is based on a quasi-steady-state model for the insect
aerodynamics. It is a nonlinear function of the instantaneous po-
sition and velocity of the wing stroke (flapping) angle ¢ and the
angle of attack « of both wings, but it does not depend explicitly
on time. The aerodynamic forces and torques can be written as

f(lz)(t) = .f2(¢r7 ¢l7 Pr, P, ¢r7 ¢l7 ¢r7 901) = f(i)(’uWu)

T(?(t) ZTS(@: b1, 0y 01, rs D15 Pry P1) = T:(uu) @
where u = (¢, ¢1, or, 1), and the lower scripts 7 and [ stand
for right and left wing, respectively. The stroke angle ¢ is the
angle between the wing radial axis and the y-axis of the stroke
plane. The rotation angle ¢ is defined as the angle between
the vertical plane and the wing profile, which corresponds to
the complement of the angle of attack «, i.e., @ = 90° — |
(see Fig. 3). The explicit expression of aerodynamics forces and
torques as a function of wing kinematics can be found in [4]. The
aerodynamic forces and torque are the only TV element in (1);
otherwise, the insect dynamics would be very similar to the TI
nonlinear dynamics of a helicopter. On the other hand, the wing-
beat period is much smaller than the responsiveness of the in-
sect body, therefore, intuitively speaking, only mean forces and
torques are relevant. In fact, this approximation has been for-
malized by averaging theory [28] and has been widely used in
different applications including helicopter aerodynamics [22],
[30]. Recently, averaging theory and high-frequency periodic
control has been successfully paired with tools from geometric
control theory [31], [32] for trajectory tracking and approxi-
mate stabilization of fish and snake-like vehicles [33]-[39]. In
particular, these tools model the system dynamics as an affine
system of the form & = fo(z)+> i, fi(x)u;, where u; are the
control inputs. Moreover, these systems are underactuated, i.e.,
the number of available inputs u; is smaller than the DOFs. A
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Fig. 3. Definition of wing kinematic parameters. Left: 3-D view of insect body and left wing. Right: Top view of the insect stroke plane.

classical example of an underactuated system is a car-like ve-
hicle; in fact, even if only steering and forward velocity can
be controlled, the car can be steered to any desired configura-
tion, i.e., z—y position and orientation. One of the goals of geo-
metric control theory is to design suitable stabilizing TV inputs
u; = g;(x,t) directly from the structure of the flow of the dy-
namics, i.e., from the vectors f;(z). For driftless systems, i.e.,
for fo(x) = 0, such conditions have been found, and a number
of stabilizing algorithms exists [31], [40], [41]. However, the
dynamics of most biological locomotion such as fish and eel
swimming include a drift term. The drift term greatly compli-
cates the controllability analysis and controller design. Only a
few tools are available to systematically synthesize the control
laws for such systems, and they are mainly limited to mechan-
ical systems with specific geometric properties [42], [43]. This
is a very active research area, but it is beyond the scope of this
paper to review it. We refer the interested reader to the text-
books [31] and [32] for a general discussion on geometric con-
trol theory and to the review paper [44] for its application to fish
swimming.

Although insect flight belongs to the class of underactuated
control systems, we do not directly apply these tools because
of the complexity of the aerodynamic forces and torques and,
thus, the complexity of the vector flow described as a function
of the wing angles and velocities u. In principle, the geometrical
properties of insect flight could be analyzed numerically and
then control algorithms could be designed by applying the afore-
mentioned tools. However, this is not a straightforward method
since insect aerodynamics are highly nonlinear. Moreover, this
purely mathematical approach gives rise to a very complex de-
scription of controllers which is hard to relate to the flight con-
trol mechanisms adopted by insects. Therefore, this direction is
not pursued further here. Instead, we propose to parameterize
the wing motion based on biomimetic principles to design our
periodic inputs, i.e., we propose u = g(v, t). Then, by applying
averaging theory to approximate the complex TV dynamics with
the average TI dynamics, we show that there is a direct map be-
tween the proposed kinematic parameters and the mean forces
and torques. The kinematic parameters appear as virtual inputs
in the averaged dynamics. The averaged dynamics is then suit-
able to standard controller design, similarly to those found in
helicopter control.

B. Averaging

Averaging theory and high-frequency control encompass sev-
eral results, and they have been applied in different scientific
areas. Recently, these results have been applied specifically to
insect flight [45]. Here, we report only some of the results that
we will use for the flight controller design.

Theorem 1: ([45]) Let us consider the following systems:

= f(z,u,0)

pn >
g(v,t} =g(v,t+1T)

ji: f(z,0) -

f(x,}v()_T 7 Jo 2 g(v,t), (v, t))dt )

where z, 7 € R", v € R™, and v € RP, and all functions and
their partial derivatives are continuous up to second order.

If # = 0 is an exponentially stable equilibrium point for the
averaged system (4), then there exists k£ > 0 such that ||z(¢) —
Z(t)|| < kT for all ¢ € [0,00). Moreover, the original system
(3) has a unique, exponentially stable, T-periodic orbit z7(t)
with the property ||z (t)|| < kT

In our setting, T is the wingbeat period, and the
system f(z,u) is given by (1) and (2), where the vector
w = (¢r, P1,0r, 1) represents the right and left wing an-
gles. The theorem is an application of singular perturbation
theory [28], [46], which studies the behavior of the dy-
namical system @& = e€f(z,t,€), where the vector flow f
is 7 -periodic in ¢ and € is a small parameter. In fact, after
the change of timescale 7 = t/T, (3) can be written as
dr/dr = Tf(v,g(h(x),T7).§(h(x),T7)) = Tf(r.7),
where f is 1-periodic in its second argument. Therefore, the
period T' plays the role of the perturbation parameter ¢ and
should not be confused with the period 7.

As will be shown in Section V-C, the wing trajectories are
chosen to be T-periodic functions and are parameterized by a
parameter vector v, i.e., u = g(v,t). The parameter vector v
can be interpreted as a vector of virtual inputs. Therefore, as sug-
gested by the theorem, we will focus on the averaged dynamics
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given by (1) where the TV wrench (f2(¢), 78(t)) is substituted
with its average
T

0
/ 2 (g(v,t), (v, 1)) dt. (5)

I
Nl =

fa(v) fa(glv, ), (v, 1)) dt

I
Nl

74 (v)

The averaged wrench is time-independent and depends only on
the virtual input vector v. The use of periodic control inputs pa-
rameterized by a set of virtual input is not new, and it has been
used extensively in geometric control theory and averaging [34],
[37], [42], [43], [47]. We will then look for exponentially stabi-
lizing control feedback law v = h(z) for the averaged systems.
If such a function exists, then the original TV system will have
a bounded error from the desired equilibrium point if the wing-
beat period 7' is sufficiently small. Although this approach does
not guarantee asymptotic stability for the original system, we
will show that the error bound kT is very small for insect flight
as observed in true insects and, therefore, irrelevant from a prac-
tical point of view.

C. Wing Kinematic Parametrization

Although it is currently unclear how true insects accomplish
the control of their flight and maneuvering capabilities, recent
experimental work on true and robotic models has found that,
by modulating a few kinematic parameters on each wing, such
as wing rotation timing at the stroke reversals and the wing
blade angle of attack, the insect can readily apply torques on
the body and, therefore, control its attitude and position [2],
[20], [24], [48]. Similar considerations has also been observed
also in fish-like swimming [49], where the modulation of few
fin kinematic parameters can generate large torques and forces.
Based on these observations, it was suggested that a small set
of wing kinematics might be sufficient to generate all possible
flight modes, and the key point for designing any of these modes
is the capability to control the MFI’s attitude [50].

In particular, the research done by Dickinson and his group
[2], [24] has suggested that the following kinematic parame-
ters may suffice to generate any flight maneuver: timing of rota-
tion, mean angle of attack, stroke angle amplitude, stroke angle
offset, and downstroke deviation. There is a strong evidence that,
if these parameters can be controlled independently, then it is
possible to control the torque and force generation during flap-
ping. For example, a large (small) stroke angle amplitude would
generate a large (small) lift. An advanced (delayed) timing of ro-
tation at the end of the downstroke results in a nose-up (nose-
down) pitch torque. A larger (smaller) angle of attack during the
downstroke relative to the upstroke produces a backward (for-
ward) thrust. Most true insects flap their wings along a sym-
metric trajectory with a stroke angle amplitude around 120° and
mean angle of attack of 45° on both downstroke and upstroke
[5], [51]. However, during saccades and other maneuvers, they
modify the wing trajectory by changing the kinematic parame-
ters described above [52].
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Fig. 4. Wing kinematic parameterizing functions given in (8).

Based on these biologically inspired arguments, the problem
to solve then is how to parameterize the wing trajectory to be
able to mimic the real insects by independently controlling some
of the biokinematic parameters described above. We will then
show how the parameters map directly to the mean torques and
forces, thus simplifying the design of a flight stabilizer. More
specifically, the wing trajectory during a wingbeat is described
using the stroke angle ¢ and the rotation angle ¢. In particular,
we parameterize the wing motion of each wing within a wing-
beat period as follows:

p(v,
o(v,

) =g4(t) +v191(2) (6)
) =9,(t) + v2ga(t) (7)

where the functions g;(t) are T-periodic functions, i.e., g;(t +
T) = gi(t), (v1,v2) are the kinematic parameters, and 7T is the
wingbeat period. These functions are chosen based on the con-
siderations above. In particular, g,,(¢) and g, (t) generate a sym-
metric motion with maximum lift production, g1 (¢) modifies
only the stroke angle amplitude, and g»(¢) modifies the timing
of rotation of the angle of attack at the end of the downstroke.
Based on observations of true insect flight, we choose the fol-
lowing functions:

t
t

92(t) = 91(?) (8)

shown in Fig. 4, which are defined on the interval ¢ € [0,7T") and
extended by periodicity so that g;(t +1") = g;(t). The rationale
behind the choice of functions g; and g was the necessity of
finding smooth curves that could modify wing trajectory ampli-
tude and timing of rotation as described above. Fig. 5 shows a
pictorial representation of wing motion and corresponding aero-
dynamic forces for different choices of the kinematic parameter
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Fig. 5. Pictorial sequence of the side view of wing motions and the corresponding aerodynamic forces for different choice of kinematic parameters. Symmetric
motion: v; = 0, vo = 0. Advanced rotation: v; = 0, v = 1. Delayed rotation: v; = 0, v = —1. Large stroke amplitude: v; = 1, vo = 0. Small stroke
amplitude: v; = —1, vo = (. Symmetric motion is defined as a wing trajectory for which downstroke and upstroke of a single wing are identical, i.e., the wing
motion is symmetrical with respect to time instant 0.57". The vector f, represents the aerodynamic force acting on the center of pressure of the wing.

v1 and vo. Note how these parameters affect the distribution of
forces along the whole wingbeat period.

The wing parametrization given by (8) is not unique, and
might not be optimal, either. However, it gives rise to wing tra-
jectories that mimic some of the trajectories observed in true
insects. In fact, a positive (negative) value for v; results in a large
(small) stroke angle amplitude; a positive (negative) value for 3
results in adelayed (advanced) timing of rotation at the end of the
downstroke. If this parametrization above is replicated for both
wings, the wings kinematics u = (¢, ¢, ©r, ¢;) can be written
in terms of the parameters v = (v}, v}, v5, v}) as follows:

w(v,t) =g(t) + G(t)v

9¢
_ |9
9=y
L9,
rg1 0 0 0
o g 0 0
=109 0 g 0 ©)
Lo 0 0 ¢

where g(¢t) and G(¢) are a T-periodic vector and matrix, respec-
tively, whose entries are defined in (8).

It is now possible to study the effect of the chosen
parametrization on the mean wrench. In fact, if we substi-

tute (9) into (5), we obtain a static map IT : R* — RS from the
wings parameters v € R?* to the mean wrench (f%, 7%) € RS as
follows:

i

|:Té’ = TI(v). (10)

This is a nonlinear map and cannot be computed analytically,
since the aerodynamic force and torque are complex functions
of wing position and velocity (see [4, Sec. IV]). However, one
could look for an affine approximation around the origin of the
wings parameters

-
|:(;:| :W0+H1U+(5(U) )

a

where 79 € RS, II; € R®*%, and §(v) is the approximation
error. Although it is not possible to linearize analytically (11)
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Fig. 6. Predicted mean wrench w = mo 4 II,v (z-axis) versus the exact mean wrench (y-axis) obtained from simulations for 100 random values of the wings
parameter vector v in the unit box, i.e., ||¢||ec < 1. The spreading around diagonal lines quantifies the modeling errors.

to obtain 7y and II; directly, it is possible to randomly select
different values for the parameter vector v, substitute it into the
parametrization given by (9), and, finally, compute the true mean
wrench (f°,7%) via simulations using the exact wing aerody-
namics. The approximating 7wy and II; can then be found by
rewriting (11) as a least-square (LS) problem, where (g, II;)
are the unknowns. Simulations are performed based on the aero-
dynamic model described in [4] and on the morphological body
parameter of a typical blowfly, which is the MFI target model.
The approximating affine map is found to be as follows:

0
0
— 11(1]g
0
0
0 0 —1.0 —1.0
0 0 03 —0.3
0.9 0.9 0 0
=0Img | o4 _oar —01r o1r| 12
—02I, —02L —04L —0.4L
0 0 —05L 05L

where m is the mass of the insect, L is the length of the wing,
and the zero entries correspond to estimated values negligible
relative to the largest entries in the matrix. This approximation
is quite accurate for kinematic parameters smaller than unity,
|lv|]loo < 1. Fig. 6 shows that the estimated mean wrench, w =
mo + II;v, predicts quite accurately the true mean wrench ob-
tained from simulations, thus validating our approach.

The particular structure of this map is a consequence of the
parametrization based on the biological insights described at the
beginning of this section. In fact, as we expect, any component
of the wrench depends additively or differentially on two param-
eters, depending on if the wings are moving symmetrically or

antisymmetrically. Note that, along the z-component, the sym-
metrical wing motions generate a vertical lift sufficient to bal-
ance insect body weight. The magnitude of the coefficients in
the map are considerable. In fact, besides the force necessary
to balance its weight, the insect can generate forward or ver-
tical thrust in excess of in the order of f° = 0.1-0.2 mg, and
angular torques of order 7° = 0.1-0.2 mLg. In other words,
considering that the moment of inertia of a true insect along one
of its principal axis is on the order of I ~ 0.1 mL? [51] and
that our target wing size is L = 10 mm, this is equivalent to
saying that the insect can generate linear accelerations of about
ain = f2/m = 0.2g ~ 2 m/s* and angular accelerations of
about aang = 7,/ = g/L = 105deg/52, which are comparable
with those observed in true insects.

By inspecting the structure of this parameters-to-wrench
map, it is apparent that the three mean torques and the vertical
thrust can be controlled almost independently by appropriately
choosing the values for the four wing parameters v. However,
there are small but nonnegligible couplings between some of
the wrench components. For example, a positive (negative)
pitch torque is always associated with a positive (negative)
forward thrust. Similarly, a positive (negative) yaw torque is
associate with a small positive (negative) roll torque and a small
negative (positive) lateral force. Although this is undesirable,
it does not undermine the stabilizability of flight modes, as we
will show in Section VL.

This section can be summarized by saying that although it is
not possible to instantaneously control the insect wrench, there
exist wing motions that can independently control the mean
forces along the z-axis and the torques about all three axes.
We also showed that the affine parametrization of wing mo-
tions given by (9), based on biomimetic principles, gives rise
to a simple affine map between the mean wrench and the kine-
matic parameters. The inspection of the map shows that the
three mean torque components and the vertical thrust can be
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controlled independently. The input vector w and virtual input
v, as defined in Theorem I, correspond in our setting to the
wing angles u = (¢, ¢1, ¢r, 1) and kinematic parameters
v = (v}, v}, v}, v}). In Section VI, we will show how to design
stabilizing controllers for the linearized averaged dynamics. By
Theorem 1, these controllers are also guaranteed to stabilize the
original nonlinear TV dynamics. It is also important to remark
that insect flight control is being studied from a fully dynamic
point of view, although the control inputs, which are parameter-
ized relative to the wing kinematics, might induce the thought
that the control is based only on a kinematic model.

VI. WING TRAJECTORY TRACKING AND ACTUATOR CONTROL

The previous section described how to design wing trajecto-
ries that can generate the desired mean forces and torques during
a wingbeat period. However, the wing trajectory cannot be con-
trolled directly, and appropriate input voltages to the thorax ac-
tuators must be devised to track the desired wing trajectory.
As described in [4], the dynamics of the thorax-wing struc-
ture can be approximated as a stable two-degree-of-freedom
(2-DOF) second-order system. Given a desired wing trajectory
(¢a(t), wa(t)), we can calculate the corresponding steady-state
input voltages by substitution as follows:

[Vm(t)} — 7 Mo [m( )} + B |:¢d(t):| LK, |:¢d(t>:|
Va,a(t) ¢a(t) Pa(t) pa(t)

(13)
where T, My, By, and Ko € R?>*2 are constant matrices, and
V1 and V5 are the input voltages to the wing actuators. Let V' =
(VL, Vi, Vi, V) be the input voltages for the two wings, and
w = (¢r, d1, r, 1), then the wing-thorax dynamics for both
wings can be rewritten as follows:

Mi+Bu+Ku=V (14)

where M, B, and K are matrices that depend on Ty, My, By,
and K, and the dynamics are stable. As we will show in Section
VII, the flight-mode stabilizer is assumed to be able to select a
new wing trajectory at the beginning of every wingbeat from
among those defined by the parametrization in (7) and (8). This
is equivalent to saying that given any sequence { vn}?zo, where
v = (v}, v}, v, v}) is the wing kinematics parameter vector as
defined in the previous section, the wing trajectory controller
must track the trajectory

uq(t) =g(t) + G(t)v(t),
v(t) =v,, tenT,(n+1)T)

where ¢(t) and G(t) are defined in (9). Note that the matrix
G(t) defined in (8) was specifically chosen to have the addi-
tional property

15)
(16)

G0)=G0)=G0)=G(T) =G(T)=G(T)=0 (17)

and, therefore, the trajectory u4(t) € C? is continuous up to its
second derivative for any sequence {v, }. If we substitute (15)
into (14), we formally obtain

Va(t) = h(t) + H(t)o(t) (18)

797

Fig. 7. Actuator voltage profile as defined in (18) for ten random values of
parameter vector v with ||v||o. < 1. The solid line corresponds to v = 0, i.e.,
Va(t) = h(t). Note that || Vy(t)|| o < 10 p Nfor all ||v||o < 1.

v(t) =vy,, t€[nT,(n+1)T)

h(t) = Mg(t) + Bg(t) + Kg(t)

H(t) = MG(t) + BG(t) + KG(t) (19)
where h(t) and H (t) are a T-periodic vector and matrix, respec-

tively (see Fig. 7). Since H(t) is simply a linear combination
of G(t) and its first and second derivatives, then it follows from
(17) that H(0) = H(T) = 0. This implies that the input voltage
vector Vy(t) € C? is continuous for any sequence {v,, }.

Let us consider a desired wing trajectory vector u4(t) defined
by (9), and the corresponding feasible input voltage vector Vy(¢)
defined by (18). We define the wing trajectory tracking error to
be e, = u — uq and apply input voltage V;(¢), then we have

Mé, = — Bé, — Ke,
¢(0) =u(0) — 1a(0)
e (0) =u(0) — uq(0)

where we used (14) and the fact i4(t) = —Big(t) — Kua(t) +
Va(t) for all t € [0,00). Since the system above is stable, we
have that lim;_, . €, (t) = 0 or, equivalently, lim; .. u(t) =
uq4(t) for any initial condition. The rate of decay 1/7gecay 1S set
by the poles of the wing-thorax mechanical system. The time
constant Tdecay 1S approximately one to two wingbeat periods
for the target MFI design. This property guarantees that even
if we cannot directly control the wing trajectory, any initial per-
turbation would disappear within a few wingbeats, and the wing
trajectory would converge exponentially to the steady-state so-
lution, as shown in Fig. 8.

The wing trajectory tracking approach developed in this sec-
tion is equivalent to a feedforward control of wing trajectory
during a single wingbeat. In fact, it allows trajectory changes
only at the beginning of every wingbeat, in such a way that
this transition is smooth and there is no error between desired
wing trajectory and actual wing trajectory. This is equivalent to
saying that there is no error between the desired and actual mean
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Fig. 8. Simulation of actuator control given in (18) showing asymptotically
tracking of desired trajectory for a random sequence of kinematic parameters
{v, }, where v = (v, v2), and random initial condition of actuator state vector,
for one wing. From bottom to top: actuator voltages V7, V> as given by (18)
(bottom). Rotation angle ¢ (center), and stroke angle ¢ (top), given by (14).
The error between desired and true wing trajectory decays after approximately
three wingbeat periods.

wrench during the following wingbeat. This approach has two
main advantages. The first advantage is that we can assume to
have direct control of the wing trajectory, and we can neglect
the wing-thorax dynamics since any perturbation would die off
within a few wingbeats. The second advantage is that it natu-
rally leads to a DT system, since the wing kinematic parameters
v are updated every T seconds, i.e., at the beginning of every
wingbeat. We will exploit these two properties in Section VII
by modeling the insect dynamics as a DT system, where the in-
puts are the wing kinematic parameters v, and the state is the
mean value of the body linear and angular position and velocity
within the previous wingbeat.

VII. FLIGHT CONTROL IN HOVER

Following the guidelines described in the previous section,
we can now look for a stabilizing controller for hovering by
designing a feedback law v = h(x), such that the origin of the
averaged system is exponentially stable.

A. Identification

The analysis in the previous section provides a torque de-
coupling scheme together with a set of virtual control inputs,
i.e., the wing kinematic parameters v, which enters into the av-
eraged system in a affine fashion. Since we are interested in
the insect dynamics close to the hovering regime where an-
gular deviations and angular velocities are small, we linearize
the averaged system dynamics near hover. We approximate the
continuous-time nonlinear system, with a DTLTI model in the
following form:

z(n+1) = Az(n) + Bv(n) + 6(n)

y(n) =z(n) +n(n) (20)

IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

where © = [, 0, ¥, @, @y @, Pp Dy Ps Uz Uy V)7 is
the vector of average roll, pitch, and yaw angles, angular
velocities, positions, and linear velocities over one wingbeat,
respectively, and 6(n) represents the unmodeled dynamics,
as well as external disturbances which appear as an external
noise to the linear model. This term includes both process
noise as well as unmodeled nonlinearities. The input vector
v = [v] v} v} vl2]T are the wing kinematic parameters, which
appear as virtual control inputs. The measurement vector
y = 158 90 9° 0% 9% 0l U5 U5 05 95 95 9] is the vector of
measured outputs from the ocelli, halteres, magnetic compass,
and compound eyes, with additional measurement noise 7(n).
As described in [4], these measurements correspond to an
estimate of the insect true state, i.e., y = .

The matrices [A, B] can be obtained analytically from MFI
morphological parameters such as mass, moment of inertia, and
center of mass. However, these parameters are difficult to ob-
tain in practice. Moreover, this approach cannot model the ef-
fect of the TV part of the aerodynamic forces. Another approach
would be to substitute the parameter-to-wrench map into the
original nonlinear dynamics and linearize it. Here, we adopted
the system identification approach, i.e., run a large number of
experiments and record the pair [y(n),v(n)] of sensor mea-
surements and kinematic parameters, and then find the matrices
[A, B] that best fit the data. Moreover, further investigation into
the particular structure of the insect dynamics given in (20) re-
sults in the following approximate linear system to be identified:

[I3xs TI3xz O3xz  Osxs
A= O3x3 Aoz O3x3  0Oszxs
03x3  0O3x3 I3sxz Tl3xs
L As1 O3x3  03x3 A
[O3x3
B
b= 03x3
_B41

where T is the wingbeat period, the matrices A2 and A4 ac-
count for angular and linear damping, and the matrix A4 ac-
counts for the linear accelerations due to tilted body orientation.
This structure is typically used in helicopter dynamics identifi-
cation [53], [54].

We first estimate a model in open loop where only data for
the first several wingbeats are recorded. Since the sensor mea-
surements provide an estimate for all of the entries of the state
vector, the model identification problem can be recast into an LS
solution to an overdetermined set of linear equations as £z = d,
where z = [ai7 P h]T is the vector of system parameters
to be estimated, and a; ; and by, 5, are the nonzero entries of the
matrices A and B, respectively. The matrix £ = E(y(-),u(+))
and d = d(y(-)) are matrices whose entries depend on the ex-
perimental data. The LS solution that minimizes the norm of the
error ||e]|? = ||d — Ez||? is given by z = E’(ETE)_IETd. The
experiments were performed on the Virtual Insect Flight Sim-
ulator (VIFS), which was developed by the authors to provide
a software testbed for insect flight [4]. The experimental data
were generated with random inputs and initial conditions near
the hovering equilibrium.
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Fig. 9. Comparison of the exact mean angles and angular velocities (thick solid line) with those predicted with the PEM-based DTLTI model (dashed line), the
LS-based DTLTI model (thin solid line), and those simulated using an exact model over 50 consecutive wingbeats.

Based on this LS model [4, B], a stabilizing state feedback
control based on pole placement was designed and tuned, first
on the nominal LTI model, and then verified on the fully non-
linear continuous-time dynamics provided by VIFS. Although
LS identification is simple and straightforward, it does not
exploit the structure of the dynamics present in (20) nor does it
provide a systematic way to estimate process and output noise.
However, it does provide a stabilizing controller which can be
used successively to perform closed-loop system identification
through the prediction error method (PEM) [55]. The PEM
cannot be applied directly to the system (20), since the system
is unstable, which is why LS identification is performed first.
The PEM-based identified model performed better than the
LS-based one in predicting insect dynamics as shown in Fig. 9.
Moreover, the estimated process and measurement noise vari-
ances and biases can be used to design better robust controllers.

B. Controller Design

In order to address the tradeoff between regulation perfor-
mance and control effort to avoid control input saturation and to

take into account process disturbances and measurement noise
in (20), we employed a linear quadratic Gaussian (LQG) op-
timal controller design.

As a first step, a state-feedback LQR regulator v = — Kx was
designed to minimize the following quadratic cost function:

J= lim FE

N—oo

]\T
<Z :v(n)TQ:v(n) + v(n)TRv(n)> 21

n=1

where ) > 0 and R > 0 are the weighting matrices that de-
fine the tradeoff between regulation performance and control
effort. The controller was designed with standard DT LQG soft-
ware, and the diagonal entries in the weighting matrices are
iteratively tuned to ensure a good transient response without sat-
urating the control inputs. The above LQR optimal state feed-
back v = — K is then substituted with a more realistic output
feedback

—Ky(n) (22)

v(n) =
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Fig. 10. Simulation of hovering control with sensor feedback and actuators dynamics. From top to bottom: insect true state and sensors measurements (row 1-3);
kinematics parameters given by (22) (row 4); actuators voltage given by (23) (row 5) during the first 25 wingbeats.

where the output ¥ is given by the sensors measurements. As
described earlier, the simplified DTLTI system (20) provides a
feedback scheme to select the wing kinematic parameter for the
next wingbeat period. The true feedback control from sensor
measurements to actuator voltages is obtained by combining
(22) with (18) to give

Va(t) =h(t) + H(t)v(t) = h(t) + H(t)Ky(t)
=h(t) + K (t)y(t) (23)
y(t) =y(nT), tenT (n+1)T) 24)

where the sensors measurements are sampled at the beginning
of each wingbeat, and K (t) is simply a proportional T-periodic
matrix gain. It is remarkable that a simple proportional T-peri-
odic feedback scheme is sufficient to stabilize the complex TV
nonlinear insect dynamics including nonlinear sensor measure-
ments, actuator dynamics, and process and output noise. More
importantly, this gain can be computed off-line and easily stored
on the computation unit of the MFI.

The LQR controller was finally tested on the fully nonlinear
TV model which includes the MFI dynamics of (1), the wing-
thorax dynamics of (13), and the sensor models described in

[4]. The simulations are based on a target MFI of 100 mg and
10-mm wingspan with wingbeat frequency f = 150 Hz. Fig. 10
shows a simulation for hovering stabilization from the initial
condition = (1, 071/}7“}9:7wyawzavapyapzavmavyavz) =
(25°, —25°,20°,0,0,0,35 mm, —25 mm, 25 mm, 0,0, 0), and
wing state (u, %) = (b, 1, or, 01, s P15 Pr, 1) = 0. Our
proposed controller design successfully achieved stabilization
despite sensor and process noise. The initial condition corre-
sponds to an offset from the desired position of about three body
lengths. The steady-state error during hovering is <1/10 of the
body length for the position and < 5° for the orientation. The
MFI requires about 50 wingbeat periods to reach the final con-
figuration, which corresponds to about two-thirds of a second
for a wingbeat frequency of 150 Hz.

C. Single Channel Identification and Control Design

Based on the particular structure of the mean wrench map
given in (12), where it appears that the mean torque and the
vertical thrust can be controlled almost independently by com-
bining, symmetrically or antisymmetrically, the kinematic pa-
rameters v = (v}, v}, v5, v}), we can reformulate the flight con-
trol problem of the 6-DOF system similar to that of helicopter
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Fig. 11. Comparison of single-channel design versus full-channel design.

control, where we have decoupled the system dynamics into lon-
gitudinal, lateral, heave, and yaw dynamics [21], [54]. In fact, if
we redefine the kinematic parameters as follows:

v = (617627@3764)

_ r 1 r 1 r l r ly _
= (0] — v1, 03 + v5, v — vy, 0] +v1) = Fo

(25)

and we use these parameters as inputs for the system (20) and
repeat the identification process, then we obtain the following
matrices:

0 a4 0

A41 = —ay 0 0

| 0 0 0
A22 = diag{ah az, (13}
Agq =03x3

-bl 0 *
le = 0 b2 0 *

|0 0 b3 O

0 = 0 O

0 0 0 by

where the zero entries are entries that were much smaller than
the other entries in the same row, and the asterisks * indicate
nonnegligible entries. If the +’s are neglected, it is clear that each
virtual parameter v; controls independently one of the three an-
gular accelerations and the vertical acceleration, thus justifying
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the single channel controller design scheme as is typically done
for a helicopter. The advantage of this approach is that the feed-
back matrix gain is given by

Kf) = diag{Klong7 Klat; Kheav7 Kyaw} (27)
where the matrices Kiong, Klat, Kheav, and Ky, are the
smaller size proportional gain matrices obtained from the
decoupled insect flight dynamics, thus reducing the compu-
tational burden when computing the feedback v = Kjy.
Fig. 11 shows a comparison between the full channel controller
design and the single-channel design. The performance using
single-channel design degrades somewhat, but it is less compu-
tationally demanding than the full-channel design, which is a
clear advantage for the limited computational unit available to
MFIs.

VIII. CONCLUSION

In this paper, we presented a framework for flapping flight
control and navigation in biomimetic robotic insects. We started
by reviewing the neuromotor architecture present in true flying
insects and highlighting analogies and differences between
insect flapping flight and helicopter flight. Inspired by true
insect neuromotor organization of flight control mechanisms,
we proposed a three-layered hierarchical control structure
that simplified flight control design while preserving the high
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maneuverability and the agile navigation capability exhibited
by true insects. The first major contribution of this paper was
to propose a suitable parametrization of wing motion during
the course of a full wingbeat and to combine it with averaging
theory arguments, thus showing that the insect TV dynamics
can be well approximated by a DTLTI system where the wing
kinematic parameters appear as virtual inputs. The second
major contribution was to propose an identification-based LQR
controller design which does not require the knowledge of
an accurate model for the insect morphological parameters,
such as moment of inertia and mechanical part’s sizes, nor
an accurate model of the aerodynamics. As a result, hovering
flight mode can be stabilized with simple affine 7T'-periodic
proportional feedback from sensor measurements to actuator
voltages. This is very important considering the limited com-
putational resources available to MFIs. Although in this paper
we focused on hovering, it has been shown that other flight
modes like cruising and steering can be stabilized using affine
T-periodic proportional feedback [56].

Several research directions can be explored. The most impor-
tant one is probably in regard to the wing parametrization, which
in this paper was based on the observations of true insect wing
motions. However, different wing kinematic parameters could
be chosen. Therefore, a more systematic methodology to opti-
mize the wing trajectory parametrization with respect to some
metrics, such as aerodynamic power or maximum torque pro-
duction, is sought.

Another important direction emerges from wing trajectory
tracking. One of the major assumptions in our approach was
the linearity of the actuator dynamics, so that wing trajectory
tracking could be easily solved using a pseudoinverse method
to compute the control input to the actuators. This assumption
is true only to the first order, as shown in [57], and nonlinear-
ities become particularly important as rapid wing rotations at
the end of the half-strokes are necessary for aggressive flight
maneuvers.

Finally, the methodologies proposed here need to be validated
against experimental data from MFI prototypes.
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