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In this paper, we propose a neural adaptive controller
for attitude control in a flapping-wing insect model.
The model is nonlinear and subjected to periodic
force/torque generated by nominal wing kinematics.
Two sets of model parameters are obtained from the
fruit fly Drosophila melanogaster and the honey bee
Apis mellifera. Attitude control is achieved by modi-
fying the wing kinematics on a stroke-by-stroke basis.
The controller is based on filtered-error with neural
network models approximating system nonlinearities.
Lyapunov-based stability analysis shows the asymp-
totic convergence of system outputs. We present sim-
ulation results for angular position stabilization and
trajectory tracking. Trajectory tracking is illustrated
by two cases: saccadic turning and sinusoidal varia-
tion in the yaw angle. The proposed controller suc-
cessfully regulates flight orientation – roll, pitch and
yaw angles – by generating desired torque resulting
from tuning parameterized wing motion. Results fur-
thermore show similarities between simulated and ob-
served turning from real insects, suggesting some in-
herent properties in insect flight dynamics and control.
The proposed controller has potential applications in
future flapping-wing Micro Air Vehicles (MAVs).

Keywords: flapping flight, neural network, attitude con-
trol, Lyapunov stability, filtered error

1. Introduction

By subtly adjusting wing motion kinematics, insects
are able to perform elaborate flight maneuvers and
achieve fast stabilization of their body posture [1, 2]. It
is challenging to study the control mechanisms adopted
by insects for several reasons: first, the observation of in-
sect flight behavior provides us with only a closed-loop
view of the overall flight dynamics, and open-loop dy-
namics is hard to identify due to experimental limitations
(e.g., [3, 4]). Second, it is difficult to capture the wing
kinematics of insects in free flight, and studies on tethered
flight are subject to many limitations [4]. Furthermore,
flight control in insect relies heavily on the fast synthesis
of different sensory information and occurs at both low-

level sensory-motor reflex and high-level central nervous
system [5–7]. Last, the unsteady aerodynamics of flap-
ping flight is hard to model analytically [8].

With improvements in quasi-steady aerodynamic mod-
els and a variety of engineering tools (e.g., [9]), how-
ever, several simplified dynamic models of insect flight
have been developed on a stroke-by-stroke basis [10–14].
Preliminary studies on flight control have, consequently,
been carried out based on these models [15–18]. It has
been shown, for example, that a linear optimal controller
is sufficient to stabilize the body posture from pertur-
bations [10]. An apparent limitation of this controller,
however, is that it is only applicable to a linearized re-
gion near the hovering trim condition and cannot be used
for tracking or maneuvering purposes. A nonlinear and
adaptive controller for insect flight that is applicable to
both position regulation and trajectory tracking is there-
fore of particular interest. The Neural Networks (NNs),
with their universal approximation property [19, 20], are
powerful paradigms for such purposes. They have been
successfully applied to digital signal processing in open-
loop applications such as classification and pattern recog-
nition [20] and in closed-loop applications such as the
control of robot manipulators [19].

The goal of this paper is to develop a neural adap-
tive controller for the nonlinear flapping-flight dynam-
ics based on the quasi-steady aerodynamic model [10,
11, 21]. We focused our work on attitude dynamics be-
cause maintaining a desired body posture appears be to
the primary goal of flight stabilization. This paper is
organized as follows: Section 2 is a brief overview of
the insect model used in the current work. Section 3
describes attitude dynamics, wing kinematic parameter-
ization, filtered-error dynamics and the design of neural
adaptive controller. Simulation results are summarized in
Section 4. Conclusions and discussions on future works
are presented in Section 5.

2. Insect Model

The insect body is modeled as a rigid object with three
ellipsoids representing the head, thorax and abdomen, re-
spectively (Fig. 1). The center of gravity is located be-
low the wing base at distance l1. Model parameters are
obtained from the wing and body morphologies similar
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Fig. 1. A) An isometric view of the insect model in simulation: head, thorax and abdomen of the insect are modeled as ellipsoids.
See Table 1 for morphological data. Coordinate systems: the body frame (xb,yb and zb), the inertial frame (x0,y0 and z0) and the
stroke-plane frame (xs,ys and zs). All three frames have the same origin at the center of gravity of the fly. Wing kinematics are
specified by three Euler angles – stroke angle (φ ), deviation angle (θ ) and rotation angle (ψ). Angle of attack (α) is defined as
the angle between the wing chord and wing velocity. B) A side view: x0 is the free body angle (desired pitch angle at hover) and θ
represents the misalignment between the head and body.

to those of the fruit fly Drosophila melanogaster and the
honey bee Apis mellifera (Table 1).

A complete model of closed-loop insect flight dynam-
ics includes five subsystems: aerodynamics, body dynam-
ics, sensory systems, flight controller and actuator dy-
namics (Fig. 2). A detailed description of a similar sys-
tem is given in [10, 11]. Here, we briefly summarize the
functions of each subsystem. Subsystem aerodynamics
takes wing kinematics (stroke angle (φ ) and rotation an-
gle (ψ)) and their derivatives as inputs (elevation angle
is not considered in this work) and generates correspond-
ing instantaneous aerodynamic lift and drag forces (in the
stoke-plane frame) as outputs. Lift and drag are calculated
based on the quasi-steady aerodynamic model [8–10]. In
the force and torque generation process, total wrench [22]
in the body frame is obtained through a series of coordi-
nate transformations from the stroke-plane frame to the
body frame. By solving Newton-Euler equation for a rigid
body [22], rigid body dynamics then calculates body kine-
matics – body position, velocity, orientation and angular
velocity – based on stroke-averaged wrenches in the body
frame. The sensory system, which takes inputs from vari-
ous sensors (e.g., halters and ocelli), estimates the body
kinematics and passes it to the flight controller, which
generates appropriate control signals. In the current study,
sensory systems and actuator dynamics are identical to
those described in [11].

Table 1. Morphologies of the fruit fly Drosophila
melanogaster and the honey bee Apis mellifera. Both insect
models assume a horizontal stroke plane.

Species Fruit fly Honey bee
Drosophila Apis mellifera

Mass m (mg) 1 93.8

Wing length R (mm) 2.4 9.52

Aspect ratio A R 5.98 6.65

Body length L (mm) 2.5 15.4

Body width R (mm) 0.7 2.6

Dimensionless radius of
the second moment of
area r2

2 (S)

0.35 0.3

Ratio of wing mass
m̂W (%)

2.5 0.46

Flapping frequency n 212 197

Distance between wing
base and center of gravity
l1 (mm)

0.65 4.0

Free body angle x0 (degs) 45 56

Misalignment of the head
w.r.t. body θ

π
6

π
6

Roll moment of inertia Ix
(mg mm2)

0.12 99.1

Pitch moment of inertia Iy 0.56 1935.2

Yaw moment of inertia Iz 0.56 1935.2
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Fig. 2. Insect flight dynamic model: aerodynamics, body dynamics, sensory systems, flight controller and actuator dynamics. p
and ṗ represent body position and velocity. Θ and Θ̇ represent Euler angles for body orientation (roll, pitch and yaw) and their
derivatives.

3. Attitude Dynamics and Neural Adaptive
Control Design

3.1. Attitude Dynamics

The attitude dynamics of a rigid body is given by the
Newton-Euler equation [11]:

IbWΘ̈ + IbẆΘ̇ +WΘ̇ × IbWΘ̇ = τ̄b
a . . . . (1)

where Ib is the body moment of inertia in the body frame,
Θ = (ϕ ,θ ,φ) is a vector representing the three Euler an-
gles (roll, pitch and yaw) specifying the body orientation
and Θ̇ and Θ̈ are its first and second derivatives. W is a
transformation matrix that relates Θ̇ and Θ̈ by ωb = WΘ̇ .
ωb is the angular velocity in the body frame. τ̄b

a is stroke-
averaged total aerodynamic torque in the body frame.
Note that it has been shown in a previous study [2] that
body rotational friction is negligible compared to the aero-
dynamic torque. Gravitational force has no effect on atti-
tude dynamics. W is given by

W =

⎡⎢⎣1 0 − sinθ
0 cosφ cosθ sinφ
0 − sinφ cosφ cosθ

⎤⎥⎦ . . . . . . (2)

Defining IbW = M(Θ ), IbẆ = V (Θ ,Θ̇), and σ(Θ ,Θ̇) =
WΘ̇ ×IbWΘ̇ , the equation can be written in a form similar
to that for robot manipulator dynamics [19]:

M(Θ )Θ̈ +V (Θ ,Θ̇)Θ̇ +σ(Θ ,Θ̇) = τ̄b
a . . . (3)

where cross product σ(Θ ,Θ̇) is viewed as a disturbance
term in subsequent controller design (it is expected to be
negligible compared to the other terms). Next, for conve-
nience in proving controller stability, we further rewrite
the equation to an alternative form:

M(Θ̈)+VmΘ̇ +σ(Θ ,Θ̇) = τ̄b
a . . . . . . . (4)

where M −Vm is designed to be a screw symmetric ma-
trix while keeping VmΘ̇ = VΘ̇ . To calculate the nine un-
knowns in the matrix Vm, two conditions must be satis-
fied [19]:

1) Ṁ−2Vm is skew symmetric.

2) VmΘ̇ = VΘ̇ .

1) and 2) provide nine linearly independent equations
for the nine unknowns, thereby guarantee a unique solu-
tion. Note that the exact solution is not required in the
controller design or the proof of stability.

3.2. Wing Kinematics Parameterization
Wing kinematics and flight characteristics vary among

different flying animals, as do the unsteady aerodynamic
mechanisms adapted [23]. Some common strategies for
modulating wing motion could, however, still be iden-
tified in both free and tethered flight [24]. It has been
shown in simulation that by a proper parameterization of
wing kinematics, aerodynamic torque acting on the three
orthogonal body axes and vertical force can be controlled
almost independently in a linear fashion, although there
exists unavoidable coupling between longitudinal and lat-
eral dynamics [10, 25]. In this study, wing kinematics is
parameterized by three parameters (γ,αl,αr) denoted as
vector ν for 3DOF attitude dynamics (the system is ex-
pected to be fully actuated). Mathematically, the wing
kinematics is written as [26]:

φl(t) = gφ (t)+ γg1(t)
φr(t) = gφ (t)− γg1(t)
ψl(t) = gψ(t)+αlg2(t)
ψr(t) = gψ(t)+αrg2(t) . . . . . . . . . (5)
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Fig. 3. A schematic diagram of the controller structure.

where gφ (t), gψ(t), g1(t) and g2(t) are period functions
defined as:

gφ (t) =
π
3

cos
(

2π
T

t
)

gψ(t) =
π
4

sin
(

2π
T

t
)

g2(t) =
(

0.3sin
( π

T
t
)
−0.1sin

(
3π
T

t
))

sign
(

sin
π
T

t
)

g2(t) = g1(t) . . . . . . . . . . . . . . (6)

where γ represents the difference in stroke angles be-
tween the left and right wings. αl and αr are designed
to modulate the timing and magnitude of wing rotation.
Mapping A (·) from the above wing parameters (ν ∈ R

3)
to the mean aerodynamic torque (τ̄b

a ∈ R
3) is a com-

plex nonlinear function. Affine approximation can be ob-
tained, however, by solving a Least-Square (LS) prob-
lem [27]. Specifically, we randomly select wing parame-
ters (γ,αl,αr), each of which has a value between [−1,1],
and calculate the corresponding aerodynamic torque τ̄b

a in
the body frame via simulation. The ν and τ̄b

a pairs are
used to solve the LS problem:

τ̄b
a = π0 +Πν +δ (ν) . . . . . . . . . . (7)

where π0 ∈ R
3 and Π ∈ R

3×3 are unknowns to be solved
and δ (ν) is approximation error. Eq. (7) is then used to
estimate stroke-averaged torque τ̄b

a from ν , which is con-
sidered to be the control input for producing the desired
wing motion that achieves attitude regulations.

3.3. Filtered-Error-Based Control with a Neural
Network

In this section, we present a filtered-error-based control
paradigm with a NN approximating the nonlinear func-
tion in the system dynamics (NN design and proof of its
stability are discussed in the next section).

First, we define the tracking error e(t) and filtered

tracking error r(t) as:

e = Θd −Θ
r = ė+Λe . . . . . . . . . . . . . . (8)

where Θd is the desired angular position. Λ is a positive-
definite design matrix that is properly selected to ensure
the stability of the system. Taking the derivative of r, mul-
tiplying M on both sides, and incorporating Eq. (4), we
have:

Mṙ = M(Θ̈d +Λė)+Vm(Θ̇d +Λe)

−Vmr− τ̄b
a +σ(Θ ,Θ̇)

= −Vmr + f (x)+σ(Θ ,Θ̇)− τ̄b
a . . . . (9)

where f (x) = M(Θ̈d +Λė)+Vm(Θ̇d +Λe) is the nonlinear
function to be approximated by NN, and

x =

⎡⎢⎢⎢⎢⎢⎣
e
ė

Θd

Θ̇d

Θ̈d

⎤⎥⎥⎥⎥⎥⎦ . . . . . . . . . . . . . . (10)

As stated above, we consider σ(Θ ,Θ̇) to be a bounded
disturbance term. Here, Eq. (9) is referred as filtered-error
dynamics.

A NN-approximation-based controller with an outer
PD tracking loop is derived by setting the desired control
torque as:

τ̄d
a
b = f̂ (x)+Kr . . . . . . . . . . . . (11)

where f̂ (x) is the approximation of f (x) using a one-layer
Functional-Link Neural Network (FLNN) [19], detailed
in the next section. Fig. 3 shows a schematic diagram
of the control loop structure. Note that Kr = K(ė + Λe)
functions as a PD controller with two design parameters,
K and Λ. Next, according to Eqs. (7) and (11), we calcu-
late the control input (wing kinematic parameters) as:

ν = Π−1 (
f̂ (x)+Kr−π0

)
. . . . . . . . (12)

Due to the error σ(ν) in the linear mapping for aerody-
namic torque (Eq. (7)), the difference between desired and
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actual torque is:

˜̄τb
a = τ̄d

a
b − τ̄b

a = f̂ (x)+Kr−A (ν). . . . (13)

Filtered-error dynamics therefore becomes:

Mṙ = −Vmr + f (x)+σ(Θ ,Θ̇)− τ̄b
a

= f̃ (x)− (Vm +K)r +σ(Θ ,Θ̇)+ ˜̄τb
a . . (14)

where f̃ (x) = f (x) − f̂ (x) is approximation error by
FLNN. ˜̄τb

a and σ(Θ ,Θ̇) are both considered to be distur-
bances.

3.4. Partitioned One-Layer Functional-Link
Neural Network Design

The problem then remains to design the NN and to
prove its stability. We chose a one-layer FLNN to approx-
imate f (x) because of its simplicity and linear weight-
updating algorithm. Its universal approximation property,
however, holds only if its generalized activation function,
φ(x), is selected as a basis set [19]. That is, for any func-
tion f (x) defined in a compact, simply connected set of
S ∈ R

n, there exist weights W such that:

f (x) = W T φ(x)+ ε . . . . . . . . . . . (15)

where ε is estimation error with a known bound εN depen-
dent on region S. Activation function φ(x) is a predeter-
mined basis function set that represents a mapping from
the input of FLNN to the output of its hidden layer [19].
W represents the second layer of weights. Note that the
one-layer FLNN has one layer of adjustable weights and
two layers of neurons (Fig. 4).

The selection of the basis function set is not unique.
In our specific problem, the basis set is constructed by
partitioning the NN into subnets that approximate each
term in f (x) separately (Fig. 4):

M(Θ̈d +Λė) = W̃ T
MφM(x)+ εM

Vm(Θ̇d +Λe) = W̃ T
V φV (x)+ εV . . . . . (16)

The sum of these two subsets is the output of the FLNN.
The filtered-error dynamics given by Eq. (14) then be-
comes

Mṙ = W̃ T
MφM(x)+W̃T

V φV (x)− (Vm +K)r

+σ(Θ ,Θ̇)+ ˜̄τb
a + εM + εV . . . . . (17)

where εM and εV are estimation errors for M and Vm.
W̃ T

M and W̃ T
V are the adjustable weights for the two sub-

nets.
Next, the weight-tuning algorithm is given by the the-

orem below to ensure the stability of the closed-loop sys-
tem.

Assume that the desired trajectory Θd is bounded by
ΘB and initial tracking error r(0) satisfies the initial con-
dition assumption [19]. Let the NN construction error
be bounded by εMN + εVN , system identification error ˜̄τb

a
bounded by τB, and σ(Θ ,Θ̇) bounded by σB. In the
filtered-error dynamics (Eq. (17)), let the gain K satisfy:

Kmin >
(εMN + εVN +σB + τB)(c0 + c2)

bx −ΘB
. . . (18)

Fig. 4. A schematic view of the partitioned FLNN: subnet-1
and 2 approximating M(Θ )ζ1 and Vm(Θ ,Θ̇)ζ2, respectively,
where ζ1 = Θ̈d + Λė and ζ2 = Θ̇d + Λe. Hidden layer ac-
tivation function σ1(·) is selected as a symmetric sigmoid
function. Output layer activation function σ2(·) is selected
as a pure linear function. Subnet-1 consists of 21 hidden
layer neurons and 3 output layer neurons. Subnet-2 consists
of 72 hidden layer neurons and 3 output layer neurons.

where Kmin is the minimum singular value of K. Sx ≡
{x|‖x‖ < bx} is the compact set that NN approximation
holds and c0 and c2 are two positive constants (explained
later). It is shown that, given weight tuning:

˙̂W M = FMφM(x)rT ,

˙̂WV = FV φV (x)rT , . . . . . . . . . . . (19)

with constant design parameter matrices Fi = FT
i >

0 (i = M,V ), and assume that the hidden-layer out-
put φi(x) is Persistence of Excitation (PE) [19]; then
the filtered-tacking error r(t) is Uniformly Ultimately
Bounded (UUB) [19], and NN weight estimates Ŵi (i =
M,V ) are bounded.

In the following, we give a detailed derivation of parti-
tioned NN weight tuning and proof of boundedness. The
derivation is adapted from [19], with additional modifica-
tions, to our specific problem.

Let the NN approximation property fi(x) = W T
i φi(x)+

εi (i = M,V ) hold for each term in function f (x) (Eq. (9)),
with given accuracy εMN and εV N for all x in the com-
pact set Sx ≡ {x|‖x‖ < bx} with bx > ΘB. Define Sr ≡
{r|‖r‖ < (bx − qB)/(c0 + c2)}, where c0 and c2 are two
positive constants determined by design matrix Λ and ini-
tial tracking error e0 (for definitions, see p. 178 of [19]).
Let r(0) ∈ Sr, the approximation property then holds.

Define the Lyapunov function candidate:

L =
1
2

rT Mr +
1
2

tr(W̃ T
MF−1

M W̃M +W̃ T
V F−1

V W̃V ). (20)

606 Journal of Robotics and Mechatronics Vol.24 No.4, 2012

fujipress
ハイライト表示

fujipress
ハイライト表示

fujipress
ハイライト表示



Neural Adaptive Controller in Flapping Flight

Differentiating yields:

L̇ = rT Mṙ +
1
2

rT Ṁr

+tr
{
(W̃ T

MF−1
M

˙̃W M +W̃T
V F−1

V
˙̃WV )

}
. . (21)

Substitute Mṙ from the filtered-error dynamics (Eq. (17))

L̇ = rT
{

W̃ T
MφM(x)+W̃ T

V φV (x)+ εM + εV

−(Vm +K)r +σ(Θ ,Θ̇)+ ˜̄τb
a

}
+

1
2

rT Ṁr + tr〈(W̃T
MF−1

M
˙̃W M +W̃ T

V F−1
V

˙̃WV )〉

= −rT Kr +
1
2

rT (Ṁr−2Vm)r

+tr
{

W̃ T
M(F−1

M
˙̃W M +φM(x)rT )

+W̃ T
V (F−1

V
˙̃WV +φV (x)rT )

}
+rT (εM + εV +σ(Θ ,Θ̇)+ ˜̄τb

a ). . . . (22)

The second term is zero due to the screw-symmetric prop-
erty and the third term is zero if we select:

˙̃W M = −FMφM(x)rT ,

˙̃WV = −FV φV (x)rT . . . . . . . . . . . (23)

Because W̃i = Wi −Ŵi (i = M,V ) and Wi is constant, we
have the weight-updating law:

˙̂W M = FMφM(x)rT ,

˙̂WV = FV φV (x)rT . . . . . . . . . . . (24)

Now,

L̇ = −rT Kr + rT (εM + εV +σ(Θ ,Θ̇)+ ˜̄τb
a )

≤−Kmin‖r‖2 +(εMN + εVN +σB + τB)‖r‖ (25)

with Kmin the minimum singular value of K. Since (εMN +
εV N +σB +δB) is constant, L̇ ≤ 0 if:

‖r‖ >
εMN + εVN +σB +δB

Kmin
≡ br . . . . . (26)

Selecting the gain based on the above equation ensures
that the compact set defined by ‖r‖ ≤ br is contained in
Sr so that the approximation property holds. Tracking er-
ror r(t) is therefore bounded and continuity results in the
boundedness of ṙ(t).

Next, we prove the boundedness of ŴM and ŴV . It is
easy to see that the NN output:

y = W̃ T
MφM(x)+W̃T

V φV (x)

= Mṙ +(Vm +K)r−σ(Θ ,Θ̇)− ˜̄τb
a − εM − εV (27)

is bounded. Therefore, the NN weight-error dynamics are
given by

˙̃W M = −FMφMrT

˙̃WV = −FV φV rT

yT = φ T
MW̃M +φ T

V W̃V . . . . . . . . . (28)

Table 2. Values of controller parameters.

Morphology Λ K FM FV

Fruit fly
Drosophila

18 2.8×10−4 10−4 10−4

Honey bee Apis
mellifera

30 5 0.1 0.1

with y(t) and r(t) bounded. Using Kronecker product ⊗,
we write the above equations into a uniform vector form:

d
dt

[
vec( ˙̃WM)
vec( ˙̃WV )

]
= −

[
I⊗FMφM
I ⊗FV φV

][
r
r

]
yT =

(
[I⊗φ T

M I ⊗φ T
V ]

)[
vec(W̃M)
vec(W̃V)

]
. . . (29)

where the vec(A) operator stacks the columns of a ma-
trix A to form a vector. The assumption of the PE con-
dition for φ T

M and φ T
V guarantees the PE condition of

[I ⊗ φ T
M I ⊗ φ T

V ] and thus the uniform complete observ-
ability of this system. According to Lemma 4.2.1 in [19],
the boundedness of y(t) and r(t) assures the boundedness

of

[
vec( ˙̃WM)
vec( ˙̃WV )

]
and hence, of ŴM and ŴV .

Collectively, the stability of the system and the bound-
edness of NN weights are ensured from the above theorem
with a proper selection of design parameters. These pa-
rameters include filtered-error design matrix Λ, PD con-
trol gain, and NN learning constants FM and FV , properly
selected with respect to the morphologies of the fruit fly
and the honey bee.

4. Simulation Results

The controller was finally tested using the flight dy-
namic model described in Section 2. Table 2 lists the
values of design parameters Λ, K, FM and FV . For both
the fruit fly and the honey bee models, initial body orien-
tation was set at Θ0 = [0,0,0]T , with body frame aligned
with the inertial frame. The model insects were controlled
to follow two types of angular trajectories: 1) saccadic-
like turning and 2) sinusoidal variation in the yaw angle.

4.1. Hovering and Tracking of Angular Positions
In the first simulation, model insects were first con-

trolled to maintain a desired body posture at hovering.
Then, at 100 ms, they were controlled to perform an
abrupt turn about the vertical yaw axis.

Simulation results are summarized for the fruit fly
model in Fig. 5. The controller successfully achieved the
hovering stabilization and the tracking task. Specifically,
the fruit fly first produced large nose-up torque to reach
the desired body posture at 45◦ pitch angle (free body an-
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Fig. 5. Tracking saccadic turning in the fruit fly model.

gle). At 100 ms, the fly performed a banked turn with
a nose-down motion (positive roll angle and decrease in
pitch angle in Fig. 5) and maintained hovering afterwards.
Note that this simulated turning demonstrated body move-
ment similar to that observed in free insect flight [2],
which may suggest some inherent properties of the ma-
neuvers in flapping flight, such as coupling between the
yaw and roll torques.

Using the design parameters in Table 2 for the honey
bee model, the system output Θ (t) was poorly convergent
but bounded (results not shown). We noted that the poor
performance is largely due to the oscillation about the roll
axis. This is not surprising if we look at the body moment
of inertia matrix. The ratio Ix/Iz is less than 1/20 (1/5
for the fruit fly), indicating a relatively low roll moment
of inertia. The roll and yaw torques were, however, of the
same order of magnitude because they were coupled, so
the acceleration about the roll axis was much larger than
that about the yaw axis, possibly leading to the oscillation.
This problem can be solved, however, if we modify the
matrix Π as follows:

Π′ =

⎡⎣9 0 0
0 1 0
0 0 1

⎤⎦Π. . . . . . . . . . . (30)

When the first row of Π is magnified, the controller pre-
dicts greater roll torque than that actually produced. This
in turn reduces the control input and changes the relative
ratio between the roll and yaw torques produced. Cor-
responding simulation results are summarized in Fig. 6.
The modified controller successfully achieved the hover-

ing stabilization and the tracking tasks. Similar to the case
of the fruit fly, a banked turn with nose-down motion was
observed. However, there were some differences, for ex-
ample, a large roll tilting toward the direction opposite
to the banking was observed (large negative roll angle in
Fig. 6). In addition, note that the honey bee had much
higher control input ν than the fruit fly. This suggests that
the honey bee requires a higher wing kinematic asymme-
try to perform a maneuver, which is consistent with the
observations from real flight [2, 28].

In the next simulation, model insects were controlled to
follow sinusoidal yaw variation starting at 50 ms. Results
are summarized in Figs. 7 and 8 for the fruit fly and the
honey bee, respectively. For both models, tracking was
successfully achieved with little phase delay. The oscilla-
tion of the yaw angle was accompanied by oscillations in
the roll and pitch angles. In particular, the tracking was
accomplished by a series of syn-directional banking mo-
tions.

4.2. NN and PD Control
As mentioned previously, the current controller is the

combination of a PD controller and a NN approximating
nonlinear terms. However, it is surprising to note, that set-
ting the design parameter K to zero, or even negative, the
above tracking tasks can be still successfully achieved if
FM and FV are properly selected (values not shown). This
indicates that Eq. (18) is a sufficient, but not a necessary
condition and the NN itself can function as a controller
without PD control. Furthermore, we found that as long
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Fig. 6. Tracking saccadic turning in the honey bee model.

Fig. 7. Tracking sinusoidal yaw variation in the fruit fly model.

as sufficiently large K is selected (without considering sat-
uration in the change of wing kinematic parameters, e.g.,
maximum ν allowed), a single PD controller also achieves
the above tracking tasks without the addition of NN ap-
proximation.

5. Conclusions and Future Works

In this paper, we have presented a filtered-error based
controller for attitude stabilization and tracking in flap-
ping flight. Nonlinear terms in the dynamic equation have
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Fig. 8. Tracking sinusoidal yaw variation in the honey bee model.

been approximated by a one-layer FLNN. The controller
has successfully achieved stabilization and tracking tasks
for two different insect models. Compared to a Linear
Quadratic Gaussian (LQG) controller designed solely for
stabilization purposes [10], the current controller achieves
faster convergence and a broader stable region. In future
works, we plan to develop a controller for a complete
6DOF dynamics that is able to achieve stabilization and
tracking for both linear and angular body positions. It is
also important that we explore additional kinematic pa-
rameters increasing the linearity of the aerodynamic map-
ping A (·), which possibly reduces the error and nonlin-
earity in the controller design.
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