
  

  

Abstract—we investigated whether flapping flight has an 
inherent stability by analyzing the inertial and aerodynamic 
effects of flapping wings on body dynamics.  Based on wing and 
body kinematics of free flying fruit flies during rapid maneuvers, 
we found a passive counter torque due to body rotation. It is 
indentified both in simulation through quasi-steady state 
aerodynamic model and through experiments on a dynamically 
scaled robotic wing. An analytical form is derived 
correspondingly. In the turning yaw axis, the estimated 
damping coefficient of flapping wings is significantly higher 
than body frictional damping; this indicates a passive 
deceleration during turning. By simulating insect to rotate 
about each principal axis of inertial and body frames, we 
calculated the corresponding damping coefficients, and further 
analyzed the attitude stability. The result reveals that, passive 
damping of flapping flight, while does not necessarily lead to a 
stable full body dynamics, provides a considerable passive 
restoring torque that could be critical for flight stabilization and 
control in the design of micro aerial vehicles. Preliminary 
analysis on the scaling parameters of passive damping was also 
performed. 

I. INTRODUCTION 
lapping flight mechanism adopted by flying insects and 
birds, imparts unprecedented maneuverability over 

conventional aircrafts.  Directly related to maneuverability, 
stability of flapping flight is of great interest. It was found 
both in tethered insect experiments and computational studies 
that, flapping flight is inherently unstable in longitudinal 
dynamics[1, 2]. However, insects are capable of maintaining 
a fixed body orientation under the disturbance of environment. 
It is observed in real insect flight that, the angular position of 
insect is held constant during cruising flight and abruptly 
change to a new direction by rapid turns, known as 
saccades[3]. Thus, the question of how the insect manage to 
stabilize itself while possessing such a great maneuverability 
is of great importance both for biological analysis and micro 
aerial vehicles (MAVs) design.  

During saccade, as insect actively generate a large yaw 
torque to start turning, the mechanism for deceleration is still 
undetermined. While previous models assumed body friction 
play a major role to stop turning, S.Fry et al argued that inertia 
dominates the tuning dynamics[4], and active counter torque 
is required. However, both sides didn’t consider the effect of 
body angular velocity during the deceleration. In this study, 
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we systematically investigate the effect of body rotation on 
the aerodynamic force and torque production during saccade 
of fruitfly Drosophila, and we seek a comprehensive 
investigation of the mechanism of passive stability in 
flapping flight.  

II. MATERIAL AND METHODS 

A. Analysis on simplified kinematics 

 
Fig. 1. Simulation model: head, thorax and abdomen of the fruitfly are 
modeled as ellipsoids. See Appendix (Table 2) for morphological data. Axis 
systems: body frame ( ௕, ௕ and ௕) ; inertial frame ଴, ଴ and ଴). Wing 
kinematics are specified by three Euler angles stroke angle ( ), deviation 
angle ( ) and rotation angle ( ). Angle of attack ( ) is defined as the angle of 
wing chord and tangential of wing’s trajectory. And unless otherwise 
mentioned, this paper follows the conventions and nomenclature of [5]. 

 
To investigate the effect of body rotation on aerodynamic 

torque production during saccade, we simulated the rotation 
and calculated the resultant torque based on a quasi-steady 
aerodynamic model[6]. The coordinate system and 
kinematics parameters used throughout this paper are 
summarized in Fig. 1. An earth fixed inertial coordinate frame 

଴ ଴ ଴ and a body-centered coordinate frame ௕ ௕ ௕ are 
introduced to give the reference frames for wing and body 
kinematics of the fly. The stroke plane is oriented with a fixed 
pitch angle (free body angle ଴) from the body frame, and the 
two frames share a same origin located at the center of mass. 
In this simulation the stroke plane is horizontal and its 
coordinates are aligned with the inertial frame. Three Euler 
angles, termed as stroke angle ( ), deviation angle ( ) and 
rotation angle ( ) are employed to describe the wing 
kinematics. For simplifications, the head, thorax and 
abdomen of the fruit fly are modeled as ellipsoids (Fig. 1). 
The mass and inertia matrix are calculated based on the 
measured morphological data (Appendix C, Table 2). The 
insect was simulated to rotate with each principal axis of 
inertial frame and body frame with specified wing flapping 
kinematics (Fig. 2), and the aerodynamic forces on the wing 
were calculated based on the quasi-steady aerodynamic 
model[6]. We calculated the aerodynamic torques on the 
body frame assuming center of pressure located at 70% along 
the wing span [7, 8]. 

Xb

Zb

θθθ

ф(t)

θ(t)

U(t)

α(t)

Y0

X0

Z0

Z0

Yb

Turning Dynamics and Passive Damping in Flapping Flight  
B. Cheng1, S.N. Fry2, Q. Huang1, W.B. Dickson3, M.H. Dickinson3 and X. Deng1* 

F 

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 1889



  

First, we used a wingbeat frequency of 212Hz and wing 
kinematics described in Fig. 2AB, both mimicking those of 
the fruit fly Drosophila during free flight.  We simulated the 
flight with a inertial frame yaw turning velocity of 

 which is close to the average yaw angular 
velocity of a fruitfly during saccade (Fig. 8C) in 
measurements [4].  We then calculated the resultant inertial 
frame yaw torque, and denoted it as passive counter torque. 
As a comparison, we simulated the flight with the same body 
angular velocity with both wings stationary at a constant 
angle of attack of 90 degrees (Fig. 2C). Without wing 
flapping, the wings and body comprise a single rigid object 
and the resultant counter torque is induced solely by the 
turning velocity. Because wing flapping affects the 
magnitude and direction of instantaneous forces and 
torques[9][10], the measured resultant torque is expected to 
differ significantly under these two conditions. We then 
calculated the damping coefficient for yaw rotation based on 
the measured counter torque for both cases. 

The above simulations were then repeated for the 
remaining principal axes in both the inertial and body frames 
( ଴ , ଴ , ଴ , ௕ , ௕ and ௕ ) (Fig. 2D), and the corresponding 
counter torques were calculated. For roll and pitch, the 
angular velocity was also selected to be close to their mean 
value observed in free flight insect data (Fig. 8C), Table I lists 
the turning axis and corresponding velocities. Here  
represents the body angular velocities represented in either 
inertial ( ) or body frame ( ). For each turning axis, we 
calculated the damping coefficients based on the averaged 
torques. We then systematically varied the flapping frequency 
and turning velocity to investigate how they affected the 
stroke averaged counter torque. 

 
TABLE I 

Turning axes and corresponding angular velocities 

Turning Axis ଴ ௕ ଴ ௕ ଴ ௕ 

Angular velocity  1.91 1.91 0.933 0.933 4.63 4.63 

Angular velocity has a dimension of ଷ . Values of the turning 
velocity are selected near the maximum turning velocity of real saccade of 
fruit fly. 

 

B. Analysis with real insect data 
Using a three high-speed video camera system, Fry et al. 

captured the wing and body kinematics of fruit fly Drosophila 
melanogaster in free flight, and measured the aerodynamic 
forces by playing the wing kinematics in body-centered frame 
(Fig. 3A) on a dynamically scaled robotic model [4].  Here, 
we based our simulation and experiments on the same flight 
data, and superimposed (through coordinate transformation) 
the body angular velocities onto the wing kinematics. We 
played the modified wing kinematics (Fig. 3B) on the robotic 
wing and evaluated the influence of the body motion on the 
aerodynamics force and torque production. Fig. 3 shows the 
original (Fig. 3A) and modified (Fig. 3B) wing kinematics of 
fruit fly saccade data in this study. 

 
Fig. 2. (A) Wing kinematics, plotted over 4.5 flapping cycles (total 
simulation is 10 flapping cycles). Blue and white backgrounds mark down 
and up strokes. Stroke angle, (green), deviation angle and rotation angle ([for 
definitions see [5]]), vary as sinusoids ,  
and  respectively, which approximates the wing kinematics of 
freely hovering Drosophila  (B) Wing motion with the kinematics, black line 
denotes the wing chord, with filled cycle marking leading edge. (C) Wing 
motion with the wing fixed at body frame at the middle of the stroke, and 
sweeping through the air at angle of attack 90 degrees.  (D) Six turning axes 
in the simulation, consisting three principal axes of inertial frame ( ଴ ଴ ଴) 
denoted as inertial roll, pitch and yaw and of body frame ( ௕ ௕ ௕) denoted 
as body roll, pitch and yaw, note that ଴ ௕ coincide with each other. 
Free body angle ଴ is set to be 45 degs. 

 

C. Experiment setup 
We measure aerodynamic forces on flapping wings using a 

dynamically-scaled mechanical flapper, a modified version of 
the one described in Dickinson et al [10] and Sane and 
Dickinson [11]. A detailed description is given by[12]. In the 
current experiment, the instantaneous force and torque acting 
on the wing were measured using a six-component 
force-torque sensor (ATI NANO-17, Apex, NC) attached to 
the wing holder. Wings are made of PET-G0.06 with the 
shape of a fruit fly wing and a length of 18cm. The wing base 
is attached to a holder affixed on the gear box. The wing along 
with the gearbox (2.54 cm X 2.54 cm X 2.54 cm) was 
immersed in a tank (46 cm width X 41 cm X 152 cm length) 
filled with mineral oil (Kinematic viscosity= 20 cSt at 20o C, 
density=850 kg/m3). This overall set-up enabled us to move 
the wings along pre-determined insect-like kinematic patterns 
while simultaneously measuring the forces on the wings. The 
Reynolds number for our experiments was calculated at 250 
using the equation: 

 
                                ସఏோమ௡

జሺ஺ோሻ
    

       
where  is the aspect ratio, n is the wing beat frequency,  
is wing length ,  is the wing beat amplitude( peak-to-peak in 
radians) and  is the kinematic viscosity of the fluid [13]. 
Although the Reynolds number for Drosophila at hovering is 
around 150[4, 7], which is lower than the one in our 
experiment, we expect this difference to have negligible 
effects because the viscous force does not dominate flight at 
these Reynolds numbers as confirmed by both CFD 
simulation and flapper experiments[14].  
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D. Aerodynamic torque measurement and calculation 
Measurements were performed with a single robotic wing 

because wing-wing interactions are negligible during 
hovering free flight[7]. Forces and torques measured on the 
wing are scaled versions of those on the real fly, according to 
the force scaling rule (Appendix D). The body frame torques 
were obtained through coordinate transformation. If the insect 
body is modeled as a rigid body then its complete dynamics is 
described by the Newton-Euler equations of motion (Eqn. 1): 

 
௕
௕

௕ ௕
௕ ௕

௕ ௔
௔

௙
௙

௚       (1) 

 
where  is the body mass,  is the identity matrix,  is the 
body moment of inertia matrix, ௕  and ௕  are the 
instantaneous body frame angular and translational 
velocities.The terms ௔  and ௔  represent the aerodynamic 
forces and torques; ௙  and ௙  are the frictional damping 
forces and torques acting on the fly’s body, and ௚ is the body 
gravitational force. Gravitational force of the wing is much 
smaller than the other components and is thus ignored. The 
quantities on the left hand side of the equation were 
calculated based on the body kinematics and morphology 
data described in Appendix C. Theoretically, the time trace of 
the estimated quantities on the left side (predicted force and 
torque) and those measured on the right side of the equation 
should match with bounded discrepancies, which arise from 
measurement errors and uncertainties in the morphological 
parameters. 
 

 
Fig. 3. (A) Wing kinematics (stroke angle ,deviation angle  and rotation 
angle , in body-centered frame of the left (blue) and right (red) wing 
re-plotted from [4]. (B) Absolute wing kinematics (right and left wings are 
shown in red and blue, respectively) which take into considerations the body 
rotation. All angles are derived from ZYX Euler angles for coordinate 
transformation, for detail please refer to[15]. 
 

E. Inertia analysis in flapping wing 
To rule out the possibility of inertia induced stability 

(similar mechanism as gyroscopic effect); we investigated the 

effect of wing inertia force on body dynamics, using a custom 
designed dynamic model. Note that although insect wing pair 
only has a small portion of the total insect weight, under high 
flapping frequency, its inertia force could still be significant.  

Body 1 is a rod with negligible length of radius. It is 
connected to the fixed inertial frame by a frictionless global 
joint, and its position is described by . Another two 
rods (negligible radius and mass, denoted as Body 2 and 3), 
both of which has a mass point attached to one end, are 
connected to Body 1 by two frictionless global joints at point 
A. Body 2 and 3 are flapping symmetrically with ל stroke 
amplitude at the stroke plane perpendicular to the Body1 
(Axis ௕ ), their positions are specified by a single 
parameter . They are driven by two weightless motors 
mounted on Body 1. A complete dynamics of Body 1, 2, 3, 
three frictionless joints and two motors were established 
under gravity. Given the initial positions and velocities 
of , the dynamics was simulated under a prescribed 
flapping frequency of Body 2 and 3. If we change Body 2 and 
3 to a rotating disc, this model will become a gyroscope, and a 
gyroscopic effect is expected. 

 

 
Fig. 4 Schematic plot the custom designed dynamic model. Three axis 
systems attached to each object are introduced: Body 1: ௕ ௕ ௕ , 
Body 2: ௟௪ ௟௪ ௥௪ , Body 3: ( ௥௪ ௥௪ ௥௪ . 

 
 

III. RESULTS 

A. Counter torque induced damping during turning 
We first simulated rotation around the inertial yaw axis and 

calculated the resultant counter torque with rigid wings at an 
angle of attack of 90 degrees at ିଵଵ . With the 
wings flapping symmetrically (Fig. 2) under otherwise 
identical conditions, the counter torque averaged over 10 
stroke cycles is ିଵ଴ , or about 40-fold 
increased compared to the non-flapping case (Fig. 5A). It is 
clear to see that counter torque was greatly enhanced by the 
flapping of the wing. The magnitude of this counter torque is 
about half of the maximum body frame yaw torque of 

ିଽ  resulting from active turning using 
asymmetric wing motion [4], and is very close to the total 
body frame yaw torque of ିଽ  predicted by the 
Newton-Euler equation based on measured body saccade 
kinematics (Fig. 8A). Our result confirms that passive counter 
torque is at least partially responsible for the deceleration 
during saccades, and that the fruit fly may only need to 
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produce a small additional amount of active counter torque to 
completely terminate the body rotation. 

The existence of body velocities induced counter torque is 
clear to justify with a few simplifying assumptions. Most of 
the aerodynamics force on the wing comes from delayed stall 
effect, which gives a translational force proportional to the 
square of wing velocity.  If we assume that the moment arms 
(defined as the vector from the center of mass of the body to 
the center of pressure on the wing) for both wings are the 
same, we can uniformly write the instantaneous yaw torques 
in the stroke plane during up and down stroke as (Appendix 
B2)  

                 
 ௧௢௧௔௟ ே

ସ
ଶ
ଶ

௖௣Φ
ௗథ෡

ௗ௧መ ௕      (2) 
 

where  is air density;  is the wing length; ே  
reprensents the instantaneous  wing force coefficient due to 
delayed stall (function of angle of attack ); ௕  is the 
instantaneous wing angular velocity;  is the rotation angle, 
for simplicity we have assumed  is symmetric for left and 
right wings;    is the normalized wing angular 
velocity;  Φ  are the wing flapping amplitude and 
frequency; ଶ

ଶ
௖௣ are second moment of wing mass 

and normalized center of pressure on the wing. 
 

 
Fig. 5. Simulated wing torques (A) Inertial frame yaw and roll torques for 
Left (blue), right (red) wing. Total yaw and roll torques are plotted separately 
(green), and with its mean value(dotted red) and values for no wing flapping 
case(dotted blue) (B) Body frame yaw and roll torques for Left (blue), right 
(red) wing. 
 

Since it is reasonable to view passive counter torque as a 
form of aerodynamic damping due to its linear relationship 
with body angular velocity, we evaluated the mean damping 
coefficients.  Here we define the corresponding aerodynamic 
damping coefficient as: 

 
                                     ௜ି௝

ఛ೔షೕ

ఠ೔షೕ
                          (3) 

 
Damping coefficients in different frames of reference can 

be obtained through the torques and velocities in that frame 
by coordinate transformations. For example, both the body 
frame yaw torque ௭௕ି௭଴  ) and velocity ௭௕ି௭଴ ) for the 
inertial frame yaw axis can be obtained from coordinate 
transformation and results in ିଵ଴ N m s and 

ଷ  degs/s respectively, (instantaneous and mean 
values are shown in Fig. 5B). The corresponding damping 

coefficient ௭௕ି௭଴  for the body yaw axis is 
ିଵଶ , which is the same as ௭଴ି௭଴. As will be shown 

later in this section, this equality only holds true for certain 
cases of turning. 

To compare the role of inertia and damping in flight 
dynamics during turning, we investigate the dynamics in the 
body coordinate frame. We separate the total yaw torque into 
an active component, which is due to asymmetric wing 
motion and a passive component due to body rotation. Here 
we neglect the cross product terms in Eqn. 1 since the 
magnitude of the cross term is near 1/30 of the value of the 
other terms calculated based on free flight data of a saccade [4] 
and only examine the body frame yaw dynamics, which 
simplifies to (Appendix A):        

                        
௬௔௪ ௬௔௪

௕
௔௖௧௜௩௘_௬௔௪ ௭௕ି௭଴ ௭௕ି௭଴ ௙௥௜௖௧௜௢௡ ௭௕ି௭଴  

(4) 
where ௔௖௧௜௩௘_௬௔௪  is the active component of yaw torque, 

௖௢௨௡௧௘௥_௬௔௪ is the passive yaw counter torque (
ିଵ଴ ), ௬௔௪  is the yaw moment of inertia estimated 

based on body morphologies (Appendix C,
ିଵଶ ଶ ), ௭௕ି௭଴ is the angular velocity about the body 

yaw axis ( ଷ , and ௙௥௜௖௧௜௢௡  is  the 
frictional damping coefficient of the body. The total damping 
coefficient, ௭௕ି௭଴ ௙௥௜௖௧௜௢௡was estimated as 

ିଵଶ  in the first set of simulations with symmetric 
wing motion (Fig. 2AB). The body frictional component, 

௙௥௜௖௧௜௢௡, was estimated by Stokes’ law ( ିଵଶ , 
[4]), whereas ௭௕ି௭଴ was calculated as ିଵଶ , 
or roughly 56 times the value of body frictional damping.  

To get a comprehensive view of damping coefficient in all 
three orthogonal axes, and further analyze the dynamic 
stability of flapping flight, we simulated the situation which 
insect is turning separately about ଴ ଴ ଴ ௕ ௕ ௕ 
axes (Fig. 2D) with a symmetric wing stroke pattern (Fig. 
2AB). The results show similar counter torques in both roll 
and pitch direction as documented in Table II. It is apparent 
that, for the rotations round the principal axes of inertial 
frame, damping is most prominent about the turning axis 
upon which the angular velocity is specified (values of 
counter torques on other axes are negligible). In other words, 
the resultant torque is roughly collinear with the turning axis. 
Significantly, this is also true for rotations about ௕ ௕, 
which have a fixed orientation in the inertial frame 
coordinates. Thus, it is highly suspicious that such effect 
holds for any rotation axes, which has not been systematically 
addressed in current study.   

 
Fig. 6. (A) Counter torque by varying the flapping frequency. (B) Counter 
torque by varying the turning velocity of inertial yaw. 
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The counter torque is a part of the total aerodynamic torque 
which is an inherently nonlinear function of body velocity 
and wing kinematics. We systematically varied the flapping 
frequency and turning velocity to quantify their effects on 
passive counter torque production and tested for its linearity, 
as predicted by Eqn. 2. Unsurprisingly, the result confirms 
their linear relationship (Fig. 6), and the corresponding 
damping coefficients is a constant.  

 
TABLE II 

Toques and damping coefficients 
Turning  
Axis ଴ ௕ ଴ ௕ ଴ ௕ 

Angular 
velocity 

1.91 1.91 0.933 0.933 2.0 2.0 

௭௕ି / -9.48 / 0 / 0.06 

௬௕ି / 0.03 / -2.19 / -0.03 

௫௕ି / 0.06 / 0 / -9.95 

௭଴ି -9.54  0  0  

௬଴ି 0  -2.19  0  

௫଴ି 0  0  -9.88  

௭௕ି / 28.45 / 0 / -0.17 

௬௕ି / -0.09 / 13.46 / 0.09 

௫௕ି / -0.18 / 0 / 28.50 

௭଴ି 28.69 / 0 / 0 / 

௬଴ି 0 / 13.46 / 0 / 

௫଴ି 0 / 0 / 28.32 / 

Dimension of angular velocities is ଷ  Dimension of torques is 
ିଵ଴ and dimensions of damping coefficients is ିଵଶ . Note that 

negative torque corresponds to positive damping coefficient. 
 

Lastly, the passive stability due to passive counter torque 
was examined by looking at the system matrix  for the 
averaged attitude dynamics, linearized at hovering 
equilibrium (detail derivation is not presented here, for a 
similar derivation of longitudinal dynamics refer to[2]): 

 

  (5) 

 
where angular velocity ௕

் , and the angular 
position of the insect body is described by three Euler angles 
(roll, ; pitch,  and yaw ). The eigenvalues of A are:  -57.2, 
-248.9, -26.6, 0, 0, 0. The zero eigenvalues indicate that the 
linearized system is marginally stable, and the stability of the 
corresponding nonlinear system cannot be determined based 
on the current linearized model. Thus, further analysis is 
required to determine the passive stability of attitude 
dynamics. Furthermore, the overall stability of insect flight 
involves a full body dynamics including attitude and 
translational components. Previous studies have identified 
unstable modes in the hovering longitudinal dynamics based 
on CFD simulations [16] and tethered flight experiments[2]. 
On the other hand, despite the failure of the linearized model 
in determining the passive attitude stability, passive counter 

torque does serve as a stabilizing factor for flapping flight as 
it make harder for insect to maneuver and increases the 
damping of flapping flight . 
 

B. Wing inertia analysis 
First, we simulated the dynamic model with a rotating disc 

in replacement of the flapping wings. As predicted by 
gyroscopic effect, Body 1 did not fall down but was 
oscillating about ௕ axis (Fig. 7, indicated by the oscillation 
of ). Concurrently, it’s rotating about vertical axis ଴ at near 
constant angular velocity ( ).For simulation 
with flapping wings, we didn’t observe a similar result as in 
the first case, while given various initial conditions and 
flapping frequencies. When simulation started, Body 1 
simply felt down and kept oscillating (Fig. 7 oscillation of ) 
like a pendulum.  

Thus, the result shows that the passive stability due to wing 
inertia doesn’t exist and won’t contribute to the total stability 
of flapping flight.  

 
Fig. 7. Instantaneous value of   (blue) and (red) for (A) gyroscope (B) 
flapping wings. As indicated by the time trace of  that Body 1 is oscillating 
like a pendulum for a flapping wing pair. 
 

C. Scaling of counter torque and passive stability 
In order to analyze the scaling of the passive counter torque, 

we analytically write the averaged body acceleration of insect 
due to counter torque as: 

 

௣
஼ಿതതതതఘோర௖ҧ୰ොమ

మሺSሻ୰ොౙ౦Φ௡ሺௗథ෡ ௗ௧መሻ⁄തതതതതതതതതതതത

௠ሺ௔ோሻమ   

௠
ସ୥ఠ୰ොౙ౦

௔మΦ௡ሺௗథ෡ ௗ௧መሻ⁄തതതതതതതതതതതതோ
ఠ

Φ௡ோ
           (6) 

 

where ௠
஼ಿതതതതఘΦమ௡మோయ௖ҧ୰ොమ

మሺSሻሺௗథ෡ ௗ௧መሻ⁄തതതതതതതതതതതതమ

ସ௠௚
,  is the insect body 

mass,  is a lumped parameter of insect body yaw MOI,  and 
other parameters follow the same conventions described in 
previous sections. Since ௠ is a ratio for body weight and 
mean lift force, its value is expected to be a rough constant for 
different scale of insects. Thus, as demonstrated in the Eqn. 6, 
the passive acceleration is inverse proportional to wing length 
( ), flapping amplitude (Φ) and frequency ( ). Preliminary 
analysis based on insect wing kinematics and morphological 
data, shows that ௣ for fruitfly Drosophila (higher flapping 
frequency but much smaller wing length) is 4x than the 
humming bird. As observed in the free flight of the above two 
species, when decelerating from a same maximum angular 
velocity, humming bird needs roughly 4x greater time to 
reach a half of the initial velocity, indicating an agreement 
with our predication. Therefore, a proper selection of 
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Φ  is critical for the MAV flight performance and 
control in terms of passive stability. 
 

D. Torque production of saccade 
To assess the effects of passive counter torque under 

realistic free-flight conditions, we compared the body frame 
yaw torque generated by two sets of wing kinematics in 
presence and absence of body rotation (Fig. 3). Results are 
presented in Fig. 8. The substantial difference between the 
two confirms our previous analysis that body angular velocity 
plays an important role in turning dynamics while passive 
counter torque cannot be neglected.  During saccades, flies 
not only produce high angular velocities about the yaw axis, 
but also about the roll and pitch axes (Fig. 8C), and the 
combined total angular velocity influences the aerodynamic 
forces on the wings and causes the discrepancy between the 
torque production of these two cases. 

We divided the time trace in the figure into four phases (Fig. 
8) based on hovering, acceleration, constant body yaw 
velocity and deceleration (red line in Fig. 8C). In phase I 
during which the fly is almost hovering in place, it has a near 
zero yaw angular velocity. However, there exists 
considerable amount of angular velocity about the roll and 
pitch axes (Fig. 8C). During this phase, the difference of yaw 
torque between the two cases is small and may be due to 
coupling with the non-zero pitch and roll angular velocities. 

At the onset of the saccade (Phase II), the fly accelerates 
and a large active yaw torque in body frame is generated by 
active wing motion (red line in Fig. 8A). Meanwhile, the total 
yaw torque is smaller than the active yaw torque because the 
increasing yaw angular velocity leads to strong counter 
torque (blue curve in Fig. 8A). During this period, the 
instantaneous turning axis roughly corresponds to the body 
yaw axis. Because the turning axis does not coincide with the 
vertical axis in the inertial frame (the body pitch angle is 
roughly 45o inclined relative to the horizontal plane), torque 
about it will induce body roll (banking) and a pitch down 
motion as previously described for free flight[4, 17].   

During phase III, yaw velocity reached its maximum and 
remained roughly constant (but not for all saccades, see[4]). 
Active yaw torque (Fig. 8A) is positive, corroborating the 
CFD results of  [18], as the fly continues to produce turning 
torque by asymmetric wing motion. However, the total torque 
is reduced by passive counter torque. We also note that there 
exists a large oscillation about the roll axis at the flapping 
frequency with a maximum magnitude at about twice the yaw 
angular velocity (Fig. 8C). Despite the possibility of 
measurement amplification of roll angular velocity, this 
might provide evidence for active modulation of wing 
kinematics because passive damping could not lead to such an 
oscillation. 

During phase IV, the large oscillation about the roll axis 
decreases and the fly is decelerating (Fig. 8C). Note that the 
fly roughly takes two wing beats to decelerate to half the 
maximum angular velocity and the entire deceleration lasts 
about 20ms. The time constant calculated based on counter 
torque passive damping is around 17ms, indicating that 
passive damping could be mostly responsible for the 

measured deceleration. However, during this stage the fly 
also appears to generate active decelerating torque as 
evidenced by its asymmetric wing kinematics [4]. This 
implies that although passive counter torque could serve as a 
main factor of deceleration, active decelerating cannot be 
excluded. The angular velocity is mostly about the inertial 
yaw axis during this final stage of turning.  From Fig. 8A, the 
active yaw torque without body rotational effects (red trace) 
is almost positive during the saccade, except at the end of the 
saccade starting around 70ms, and is greater than the total 
yaw torque either measured or predicted by the Euler 
equation (by calculating the left side of Eqn. 2). Toward the 
end of the saccade, the fly could assume a roughly symmetric 
stroke pattern and let passive damping reduce its angular 
velocity, while producing a small amount of active braking 
torque with an asymmetric wing stroke. 

 

 

Fig. 8.(A) Measured body yaw torque with (Blue) and without (Red) body 
angular velocities superimposed on the wing kinematics, and their difference 
as the counter torque , CFD results (green[18]) and S. Fry’s results 
(purple,[7]) without body velocities; (B) Left hand side of the Euler equation 
(green) compared with measured torque in our experiment (again blue). A 
strong positive turning torque and a negative restoring torque can be seen at 
the onset and end of the saccade. Because the cross terms in Euler equation is 
small compared to the other term, the estimated yaw torque is proportional to 
the yaw angular acceleration. (C) Body angular velocity about roll (blue), 
pitch (green) and yaw (red) axis. 

 
 

IV. DISCUSSION AND FUTURE WORK 
In the flapping flight, for each perturbed turning axis, there 

always exists a restoring torque which functions as a passive 
damping(as indicated by the positive damping coefficients 
Table.2). However, instability could still exit in flapping 
flight because of the coupling. In the study by Taylor and Sun, 
they both indentified the unstable modes in longitudinal flight 
dynamics for flapping flight. As described in [1, 16], the 
calculated aerodynamics derivatives (similar to damping 
coefficients) show similar damping effects in roll, forward , 
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and descending directions and serves as a stable factor for 
flapping flight (One can find similar damping in translational 
motion, i.e. forward and descending). Other cross terms, 
however, may cause the instability; for example, a 
disturbance of forward velocity during hovering will cause a 
large pitch moment that lead to an unstable longitudinal 
dynamics[1, 16].  Therefore, in flapping flight dynamics, the 
instability does exits due to coupling and need active 
stabilizations during hovering and maneuvering. 

In this study, we focused our analysis of passive damping 
and stability on fruitfly Drosophila which is a relatively small 
scale fly. It is of great importance to investigate the scaling of 
body angular velocity induced passive damping on different 
scale of insects, and to use the results to help decide the 
design parameters of flapping wing MAV. We showed here 
the preliminary results that smaller scale fliers may has great 
passive stability as well as maneuverability over large scale 
fliers. Furthermore, in current analysis, an analytical form of 
passive counter torque for turning about yaw axis was derived; 
in the future work, we will seek to find similar analytic forms 
of counter torque for roll and pitch axis. 

APPENDIX 
(A) 

If we neglect the cross product terms in the Euler equation, 
which are negligible compared to the inertia term, and only 
write terms in the yaw direction, Eqn. 1 may be simplified to:  

 
                                    ௬௔௪ ௬௔௪

௕
௬௔௪                            (A1)

          
In order to separate the different torque production 
mechanisms, we linearize the total yaw torque, ௬௔௪  with 
body yaw angular velocity ௬௔௪

௕  at a reference 
point ௬௔௪ሺ௥௘௙ሻ

௕ . Thus, the total yaw torque is decomposed 
into an active torque produced by wing motion ( ௔௖௧௜௩௘_௬௔௪), 
a passive counter torque due to body rotation ( ௖௢௨௡௧௘௥_௬௔௪), 
and a damping torque due to body friction ( ௕௢ௗ௬_௙௥௜௖௜௧௜௢௡), as 
in Eqn. A2:  
 

௬௔௪ ௬௔௪ ௬௔௪
௕

௟
డథሬሬሬറ೗

డ௧ ௥
డథሬሬሬറೝ

డ௧
 

௬௔௪ ௬௔௪ሺ௥௘௙ሻ
௕

௟
డథሬሬሬറ೗

డ௧ ௥
డథሬሬሬറೝ

డ௧
డఛ೤ೌೢ

డఠ೤ೌೢ
್ ఠ೤ೌೢ

್ ୀ௥௘௙ ௬௔௪
௕  

௔௖௧௜௩௘_೤ೌೢ ௬௔௪ሺ଴ሻ
௕

௟
డథ೗ሬሬሬሬറ

డ௧ ௥
డథሬሬሬറೝ

డ௧ ௭௕ି௭଴ ௙௥௜௖௧௜௢௡ ௬௔௪
௕   

௔௖௧௜௩௘_௬௔௪ ௭௕ି௭଴ ௭௕ି௭଴ ௙௥௜௖௧௜௢௡ ௭௕ି௭଴ 
௔௖௧௜௩௘_௬௔௪ ௖௢௨௡௧௘௥_௬௔௪ ௕௢ௗ௬_௙௥௜௖௜௧௢௡                             (A2) 

 

where  and డథሬሬሬറ

డ௧
 represent the wing kinematics in 

body coordinates; ௬௔௪
௕

௭௕ି௭଴  is the body yaw angular 
velocity (defined in Eqn. 3); ௙௥௜௖௧௜௢௡ is the body frictional 
damping coefficient; ௭௕ି௭଴ is the damping coefficient due to 
passive counter torque (defined in Eqn. 3). Here we use 
negative signs in front of ௭௕ି௭଴  and ௙௥௜௖௧௜௢௡  because the 
damping opposes turning. We also use the fact that both 
passive damping and body frictional torque are linearly 
proportional to the body angular velocity. Note this 
separation is for better understanding of each mechanism and 

is not the true representation of torque production. In reality, 
force and torque are nonlinear functions of body velocity 
(translational and angular) and wing kinematics.   
 

(B) 
Here we provide a mathematical derivation of passive 

counter torque based on a quasi-steady analysis of 
instantaneous torque that takes into consideration of the effect 
of body rotation. The instantaneous left wing torque during 
upstroke is calculated as: 

 
௟ି௨௣ ௟ି௨௣ ௖௣

ଵ
ଶ ே ௪ ௕

ଶ
௖௣   

 
If there is no wing deviation, and denote: 

௪ ௪ ௕ ௕  where  ௪
Φ௡
ଶ

ௗథ෡

ௗ௧መ ଶ  and 
௕ ௕ ଶ ,the equation  becomes: 

 
௟ି௨௣

ଵ
ଶ ே

ସ
ଶ
ଶ
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Φ௡
ଶ

ௗథ෡

ௗ௧መ ௕
ଶ   

Similarly:  
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ଵ
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ସ
ଶ
ଶ
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ଶ
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ସ
ଶ
ଶ

௖௣
Φ௡
ଶ

ௗథ෡

ௗ௧መ ௕
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(B1) 
where ௟ି௨௣  denotes the instantaneous torque on the left 
wing during upstroke, and so on.  ே  is the instantaneous 
force coefficient due to delayed stall. ௕ ௪  are the 
instantaneous wing velocity vector caused by body angular 
velocity and wing flapping, respectively, ௕ ௪ denote 
their magnitudes.  is the rotation angle for simplicity we 
assume  is symmetric for left and right wings, Therefore, 
 

௧௢௧௔௟ି௨௣ ௟ି௨௣ ௥ି௨௣  

ே
ସ

ଶ
ଶ

௖௣Φ
ௗథ෡

ௗ௧መ ௕ ௧௢௧௔௟ି௨௣   

௟ିௗ௢௪௡ ௥ିௗ௢௪௡   

ே
ସ

ଶ
ଶ

௖௣Φ
ௗథ෡

ௗ௧መ ௕  
 

Thus, the instantaneous total torque could be written in a 
same form for down and up strokes: 

 

௧௢௧௔௟ ே
ସ

ଶ
ଶ

௖௣Φ
ௗథ෡

ௗ௧መ ௕           (B2) 
 

Similarly, we can also write the inertial roll torque by 
replacing  to :   
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ଵ
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                           (B3) 
By summing left and right wing roll torques for each 
sub-stroke, it can be seen that: 
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௧௢௧௔௟ି௨௣ ே
ସ

ଶ
ଶ

௖௣Φ
ௗథ෡

ௗ௧መ ௕        (B4) 

௧௢௧௔௟ିௗ௢௪௡ ே
ସ

ଶ
ଶ

௖௣Φ
ௗథ෡

ௗ௧መ ௕      (B5)             

  (B6)                                                              0 = ݈ܽݐ݋ݐ
     
Thus, the total averaged roll torque over one stroke period is 
zero as predicted by the simulation results (Fig. 5A). 
 
 
 

(C) 
 

Symbol Parameter Value 
R 
S 
AR 
ρair 
r2

2
 

n 

Wing length(mm)  
Wing area(mm2) 

Aspect ratio 
Air density(kg mm-3) 

Second moment of wing inertia 
Flapping frequency(Hz) 

2.5 
2.347 
5.96 
1.205 
0.313 
212 

Table 1. Simulation parameters: Wing area was estimated by regression 
equation: ି଺ ିଷ , and corresponding aspect 
ratio is calculated based on equation: ଶ   [7]. 
 
 
Symbol Parameter Value 
h_a 
h_b 
h_c 
h_v 
t_a 
t_b 
t_c 
t_v  
a_a  
a_b  
a_c  
a_v  
ρbody 
θ 

୷ୟ୵( ୸୸) 
୰୭୪୪ ୶୶

୮୧୲ୡ୦ ୷୷  

Head length(mm) 
Head width 
Head Height 
Head volume(mm3) 
Thorax width(mm) 
Thorax Height 
Thorax length 
Thorax volume(mm3) 
Abdomen Height 
Abdomen length 
Abdomen width 
Abdomen volume(mm3) 
density of mass (mg mm-3) 
misalignment of the head w.r.t. the body 
Yaw moment of inertia( ିଵଶ ଶ) 
Roll moment of inertia 
Pitch moment of inertia 

0.419/2 
0.813/2 
0.687/2 
0.13 
0.783/2 
0.739/2 
0.77/2 
0.24 
1.265/2 
0.773/2 
0.762/2 
0.41 
1.143 

 
0.4971 
0.1145 
0.5060 

Table 2 Morphology of fruitfly drosophila used in simulation 
 

(D) 
The gravitational force and torque of the wing are 

calculated and subtracted from the measured aerodynamic 
force and torque; the magnitude of the resultant value 

௥௢௕௢௧ ௥௢௕௢௧  is then scaled back to the force on the 
actual fly ௙௟௬ ௙௟௬according the equations:  

 

௙௟௬ ௥௢௕௢௧
ఘೌ೔ೝ·௡೑೗೤

మ ·ௌ೑೗೤·௥మ
మሺ௦ሻ೑೗೤

ఘ೚೔೗·௡ೝ೚್೚೟
మ ·ௌೝ೚್೚೟·௥మ

మሺ௦ሻೝ೚್೚೟
                 (D1) 

௙௟௬ ௥௢௕௢௧
ோ೑೗೤

ோೝ೚್೚೟
                    (D2) 
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