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ABSTRACT

Using a dynamically scaled robotic wing, we studied the
aerodynamic torque generation of flapping wings during roll,
pitch, and yaw rotations of the stroke plane. The total torque
generated by a wing pair with symmetrical motions was
previously known as flapping counter-torques (FCT5). For all
three types of rotation, stroke-averaged FCTs act opposite to
the directions of rotation and are collinear with the rotational
axes. Experimental results indicate that the magnitude of FCTs
is linearly dependent on both the flapping frequency and the
angular velocity. We also compared the results with predictions
by a mathematical model based on quasi-steady analyses,
where we show that FCIs can be described through
consideration of the asymmetries of wing velocity and the
effective angle of attack caused by each type of rotation. For
roll and yaw rotations, our model provided close estimations of
the measured values. However, for pitch rotation the model
tends to underestimate the magnitude of FCT, which might
result from the effect of the neglected aerodynamics, especially
the wake capture.

Similar to the FCT, which is induced by body rotation, we
further provide a mathematical model for the counter force
induced by body translation, which is termed as flapping
counter-force (FCF). Based on the FCT and FCF models, we
are able to provide analytical estimations of stability
derivatives and to study the flight dynamics at hovering. Using
fruit fly (Drosophila) morphological data, we calculated the
system matrix of the linearized flight dynamics. Similar to
previous studies, the longitudinal dynamics consist of two
stable subsidence modes with fast and slow time constants, as
well as an unstable oscillatory mode. The longitudinal
instability is mainly caused by the FCF induced by an initial
forward/backward velocity, which imparts a pitch torque to the

same direction of initial pitch velocity. Similarly, the lateral
dynamics also consist of two stable subsidence modes and an
unstable oscillatory mode. The lateral instability is mainly
caused by the FCF induced by an initial lateral velocity, which
imparts a roll torque to the same direction of initial roll
velocity. In summary, our models provide the first analytical
approximation of the six-degree-of-freedom flight dynamics,
which is important in both studying the control strategies of the
flying insects and designing the controller of the future
flapping-wing micro air vehicles (MAVs).

INTRODUCTION

Recent studies on the tuning dynamics of animal flight [1,
2] showed that during low-speed yaw turns (rotation about the
vertical axis such as saccade), flapping wing fliers ranging in
size from fruit flies to large birds are subject to substantial
passive damping through an aerodynamic mechanism termed
flapping counter-torque (FCT). As an inherent property, FCT
helps the flapping-wing fliers to slow down body rotation
during rapid maneuvers and thus reduces the required active
torque produced by asymmetries of wing motion. As a trade-
off, however, flapping-wing fliers must overcome extensive
aerodynamic damping (a result of FCT) to accelerate or to
initiate a maneuver [1]. Not only was the passive damping
found crucial during fast yaw rotations, simulation results [1]
suggested that it is also present during roll and pitch
maneuvers. In flying animals, measurements of body
kinematics showed that most yaw turns are accompanied by
substantial change in roll angular velocity [3]. Even at low
speed maneuvering or hovering, most flapping wing flies
perform banked turns which involve rolling. Furthermore,
during escape or tracking flight, rapid reorientations of roll and
pitch angles (causing reorientation of the net acrodynamic force
vector) are essential for fliers to achieve fast maneuvers [4, 5].
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Therefore, aerodynamic mechanisms that can achieve passive
stabilization of roll and pitch angle is important in flapping
flight.

Similar to the aerodynamic damping (from FCT) caused by
body rotation, the aerodynamic damping caused by body
translations may also be present and important to flight
dynamics. It is clear that relative airspeed will induce a drag
opposite to the flight direction and varying linearly with
airspeed [6]. Previous work has also shown that the
aerodynamics during forward flight is different from that during
hovering [7]. Furthermore, it was shown that the turning rate of
a saccade is inversely related to the forward velocity, which
might reflect an aerodynamic constraint on the flight dynamics
[8]. Therefore, a comprehensive understanding of aerodynamic
damping, in all rotational and translational degrees of freedom,
is crucial to the understanding of the flight dynamics of
flapping flight and in the design of bio-inspired micro aerial
vehicles.

Insect flight was shown to be inherently unstable based on
simulations with computational fluid dynamics methods [9] and
experiments with tethered locusts [10], and active modulation
of wing kinematics is the key to achieving the observed
maneuverability and stability. Our previous work on hovering
dynamic models assumed negligible body velocities and
therefore resulted in an open-loop marginally stable system
[11]. However, it is evident that body velocities play an
essential role in the aerodynamics and structural dynamics of
flapping flight, and a comprehensive analytical modeling of
insect flight dynamics is important to analyze flight stability
and control.

In this study, we use a dynamically scaled robotic wing to
investigate the aerodynamic damping (as a result of FCT) under
roll, pitch, and yaw rotations of the stroke plane. We further
present mathematical models for each type of rotation and
compare their predictions with experimental results. We also
provide mathematical models for aerodynamic damping during
body translations, the mechanism of which we describe as
flapping counter-force (FCF). The flight dynamics in near-
hover conditions is investigated using FCT and FCF models to
calculate the stability derivatives. In sum, we provide a
comprehensive analytical approximation of the six-degree-of-
freedom flight dynamics.

MATERIAL AND METHODS

Experimental setup

The coordinate systems and wing kinematic parameters are
described in Fig. 1A. The wings are fashioned from plastic
sheet PET-G (thickness of 0.06 inch) with a length of 21 cm
and an aspect ratio of 8.5 (including the lengths of the gearbox,
sensor, and wing holder). The instantaneous force and torque
acting on the wing were measured with a six-component force-
torque sensor (ATI NANO-18, Apex, NC, USA) attached to the
wing holder (Fig. 1A). The wing and the gearbox (2.54 cm X
2.54 cm X 2.54 cm) were immersed in a tank (46 cm wide X 41

cm high X 152 cm long) filled with mineral oil (kinematic
viscosity = 20 ¢St at 20°C, density = 850 kg/m3).
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Fig. 1. Schematic view of wing kinematic parameters and rotations of the stroke
plane. (A) A dynamically scaled robotic wing with the stroke plane frame. Wing
kinematics are specified by the instantaneous stroke angle ¢(t), and the
rotation angle 1(t) (not shown here). The instantaneous angle of attack is
defined as the angle between the wing chord and wing velocity Uc,(t). The
kinematics of the left and right wings are played individually on the apparatus.
(B) - (D) The wing kinematic asymmetries during the rotations about: (B) roll
axis, (C) pitch axis, and (D) yaw axis. The green arrows represent the
components of wing velocity induced by rotation of the stroke plane, and the
red arrows represent the components of wing velocity relative to the stroke
plane (under no rotation).

Stroke kinematics and experimental procedures

To see the effect of the stroke plane’s rotation on the torque
production of a wing pair (or to measure the FCT), we first
superimposed the angular velocity of the stroke plane into the
originally symmetrical wing motions (Fig. 2A). The resultant
kinematics was then played through the dynamically scaled
robotic wing. We performed the experiments with a single
robotic wing because wing-wing interactions are negligible for
most insects during hover [12, 13]. Based on measured torques
(in a coordinate frame attached to the sensor), the torques of a
wing pair around three principal axes in the stroke-plane frame
were calculated. The gravitational and inertial torques of the
wing were measured by playing the wing kinematics in the air
and subtracted the measurements from the total torque
measured in the oil.

In all of the three independent sets of experiments, we
rotated the stroke plane about each of its principal axes (roll xg,
pitch y,, and yaw zg, Fig. 1A). For roll and pitch rotations, the
wing strokes started with a tilted-stroke plane, passing the
horizontal plane, and stopping at another tilted-stroke plane
(Fig. 2B and C). For yaw rotation, the stroke plane was always
horizontal (Fig. 2D). Note that the wing was started impulsively
from rest, and to establish similar initial conditions during
continuous strokes, we played two symmetrical wing strokes in
advance and started the rotation at the third stroke.

In each set of experiments we systematically varied the
flapping frequency (n) and angular velocity (w) to investigate
their effects on the torque production. We first fixed the angular
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velocity at 8° s and varied flapping frequency from 0.15 Hz to
0.45 Hz with 0.05 increments. The Reynolds number associated
with this range of flapping frequency was from 300 to 900,
which is typical for insect flight [14]. We then fixed the
flapping frequency at 0.4 Hz (Re = 800) and varied the angular
velocity from 2° s™' (5%stroke) to 14° s™ (35%stroke) with 2° s™!
(5°stroke) increments.
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Fig. 2. Wing kinematics in the robotic wing experiments. (A) Plots of stroke
angle ¢ (blue) and rotation angle ¢ (green) varying as sinusoids 65 cos wt
and 60 sin wt, respectively. (B-D) Trajectories of the resultant wing kinematics
resulting from rotations about the roll (B), pitch (C), and yaw (D) axes of the
stroke plane. The solid black line denotes the wing chord, with the filled cycle
marking the leading edge. The dashed black line indicates the orientation of the
stroke plane.

Theoretical estimations of flapping counter-torques

The mechanism of FCT can be explained by considering
the geometric asymmetries of wing kinematics caused by the
stroke plane’s rotation. Based on a quasi-steady aerodynamic
analysis, we derived a mathematical model of FCT for each
type of rotation. For yaw rotation, the FCT arises from the
asymmetries of (wing) velocity magnitude between the inner
and outer wings (Fig. 1D) [1, 2]. The instantaneous FCT at non-
dimensional time £ (f=tn) and its stroke-averaged value can
be written as:

N . . dp
Tyaw(®) = —pRACHF(S)iy®Cp (o) |52 nwvys. (1)

_ a2r g ag|
Tyaw = —pR4C7”22 (S)rcpq)CD (t) |E| NWys, (2)

where Cp(a,) is instantaneous drag-force coefficients as a

function of (geometric) angle of attack «, [15], p is fluid/air
do .

- i the
non-dimensional angular velocity of the wing, ® and n are
wing-flapping amplitude and frequency, #2(S) is the

dimensionless second moment of wing area, f, is the

density, R is wing length, ¢ is mean chord length,

dimensionless center of pressure, w,; is the yaw angular
velocity in the stroke plane frame, and ¢ is stroke angle.

During roll rotation, the wing velocity and effective angle
of attack of the inner (left) wing are both altered in an opposite
manner with respect to those of the outer wing (Fig. 1B).
Specifically, the angular velocity around the roll axis induces a
downward velocity at the left half of the stroke plane, thereby
increasing the inner (left) wing’s angle of attack. Similarly, it

induces an upward velocity at the right half of the stroke plane
and reduces the angle of attack of the outer (right) wing.
Because the total aerodynamic force acting on the wing
increases with the angle of attack [15], the inner wing produces
a larger magnitude of force than the outer wing. Therefore
similar to yaw rotation, the kinematic asymmetries lead to a net
aerodynamic torque (FCT) opposite to the direction of rotation
(for details, refer to roll rotation, Appendix A):

Troll(f) =
1 . , dc . de
3 PRICFE Sy L sin (¢) cos*(@) [ @nons, (3)
2 da |a, dt
at non-dimensional time £, the averaged value over one wing
stroke is:
Trou &

1 asazrove
- EpR"crz2 ()t

dCy(a)
da |a

. sin (@) cos?(¢) |rﬁ| dnw,,, (4

where wy, is the roll angular velocity in the stroke-plane
frame.

During pitch rotation, wing velocity and effective angle of
attack are altered asymmetrically with respect to the four
quarter strokes (dorsal to middle, middle to ventral, ventral to
middle, middle to dorsal: Fig. 1C). Specifically, the pitch
angular velocity induces an upward velocity at the ventral
(anterior) half of the stroke plane and reduces the angle of
attack during the ventral to middle and the middle to ventral
strokes. Similarly, it induces a downward velocity at the dorsal
(posterior) half of the stroke plane and increases the angle of
attack during the dorsal to middle and the middle to dorsal
strokes. The collective effect of this asymmetry over one wing
stroke leads to the pitch FCT (for details, refer to pitch rotation,
Appendix A):

I 1 . . dcy(a) do
Tpitch = —EpR4CT'22 (S)rcp ga |ao sin (@) sin?(¢) |E| q)nwysa (5)

where w, is the pitch angular velocity in the stroke-plane
frame. Note that we obtained the pitch FCT by averaging the
pitch torque over a wing stroke, since it is dependent on the
torque difference between downstroke and upstroke therefore
its instantaneous value cannot be obtained. As a result, we
compare the torque production between the upstroke and
downstroke to give a more intuitive description of pitch FCT
(see results).

Furthermore, our model indicates that for each type of
rotation, the stroke-averaged FCT acts strictly opposite to the
directions of rotation (collinear with the rotation axis). In other
words, there is no resultant torque about any axis perpendicular
to the rotation axis (Annex A), and this is consistent with
previous simulation results .

Theoretical estimations of flapping counter-forces
Similar to the aerodynamic damping (i.e., FCT) induced by
body rotation, body translation also imparts an asymmetry on
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the wing kinematics, which results in a net drag opposed to the
direction of translation. In accordance with the terminology of
FCT, we termed the net force change as flapping counter-force
(FCF). The stroke-averaged FCFs for translations along the roll
(xs), pitch (y5), and yaw (z,) axes of the stroke plane frame (for
derivations, refer to Annex B) are given by:

By = —pSRA(S)®nCp(ap)cos? () [22] vy (6)
BFpys = —pSRA(S)®nCy(op)sin?(9) |22 vy, (7)

AT o ac
8F, =~ pSRAL S TED i () [2] v, (8)
la=ag

respectively, where 71(S) is the non-dimensional first moment
of wing area and v, , v, , and v, represent
forward/backward, lateral, and vertical velocities, respectively.
Notably, in the current study we consider force coefficients Cp
and C; only as functions of the geometric angle of attack «;
in general, however, C, and C; are expected to be more
complex functions of translational velocity and wing kinematic
parameters. The effects of forward/backward translation on the
aerodynamics of revolving wings have been studied by [7].
However, how lateral and wvertical translations affect the
aerodynamics remains unexplored. In this study, we consider
only a flight near hover conditions; therefore previous quasi-
steady models [15, 16] can still apply.

Stability derivatives and linearized flight dynamics
during hover

A detailed description of linearized flight dynamics can be
found in [17] and [10]. Reader can also refer to [11] for related
studies about linearized hovering flight dynamics. In the
present context, an analytical investigation is given, based on
the mathematical model of FCT and FCF. We first consider the
insect body oriented with a fixed pitch angle y, (free body
angle) relative to the horizontal stroke plane (Fig. 3). The stroke
plane frame (x5, ¥s, zs) is fixed relative to the body with the
origin located at the wing base (Fig. 3). Here we define the
body frame (xy,, yp, Zp) having the same orientation with the
stroke plane frame, but with the origin located at the center of
gravity (Fig. 3). The distance between the wing base and the
center of gravity is specified by [;. If the insect body is
modeled as a rigid body, its complete dynamics are described
by the Newton-Euler equations of motion [18], which comprise
six equations with translational velocity (u, v, w) and angular
velocity (p, q, r) as unknowns. With the addition of another
six kinematic equations describing the body position (x, y, z)
and orientation (¢, 6, V) relative to the Earth-fixed frame, a
complete system of equations includes twelve coupled
nonlinear ordinary differential equations incorporating the
aerodynamic forces (X, Y, Z) and torques (L, M, N), acting
along or around the body axes [17]. Because body position (x,
v, z) and head angle 1 do not affect the aerodynamic steady
state, they can be considered separately with appropriated
equations.

va Fig. 3. A schematic view of the body
WA coordinate frame (xy, Yy, Zp). The

r body frame is originated at the
center of gravity (red dot), which is
located below the wing base (blue
dot). The distance between the
center of gravity and the wing base
is specified by [;. The translational
velocity components (u, v, w) and
angular velocity components (p, ¢,
r) are defined about the Xy, y;, and
7, axes, respectively.

To analyze the near-hover flight dynamics, we can
linearize the equations of motion using small perturbation
theory. A crucial step in the linearization process is
approximating the aerodynamic forces and torques as analytical
functions of the perturbed motion variables (i.e., stability
derivatives multiplied by the corresponding disturbance
quantity of the motion variables), as well as obtaining the
stability derivatives. A complete description of this method can
be found in [17].

Based on the derived FCT and FCF models, we derive
analytical estimations of the stability derivatives associated
with flight dynamics during hover. Table 1 summarizes the non-
dimensional forms of stability derivatives with nonzero values.
Notably, axis x; (ys) does not coincide with axis X, (yj)
(Fig. 3); therefore a rotation around X; (y,) corresponds to a
rotation around xg (ys) plus a linear translation of the stroke
plane. We neglected the effect of this translation for
simplification, which is justified in the Discussion. Other
stability derivatives are expected to be zero (e.g., X,, Nj,) based
on FCT and FCF models.

TABLE 1. ANALYTICAL ESTIMATIONS OF NON-
DIMENSIONAL STABILITY DERIVATIVES

Non-dimensional

Stability Analytical estimations
derivatives
X O, (ap)cos?(p)|dp/df|
“ 27,(8) P
1(5)
Y 1 2
s 255y o (@o)sin (9)|d/dt|
. _#(8) dCy @) -
ZW 4?2 da =ay s ((ﬂ)|d¢/dt|
AR | dCy(a) .
L+ _ N N 2
5 1600 da S0 () cos*(#)[d/di]
(S oo ~
L 05) ARLLCy (ag)sm?(¢p)|dp/d|
AR | dCy(a) o
M+ _ 7t A N 2
a 160 dg . sin (@) si(¢) |dd/di]|
O IR S
M+ _ 1 2
u 3505) ARLLCp (0g)cos?(¢)|d/di|
N} — 22 hpCo()]dp/ ],

The stability derivatives X,,, Y, and Z,, are non-dimensionalized by pURC,
L,, My and N, are non-dimensionalized by pU?*Rc*/n, L, and M, are
non-dimensionalized by pURc?; where U equals to 2dnR7,. The superscript *
denotes the non-dimensional values, AR is aspect ratio and L denotes the
body length as a fraction of wing length ( L/R).
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Assuming hovering reference conditions:
pezqezrezuezyezwezee=¢)e=0’ (9)

and the reference values of the aerodynamic forces and
moments are:

Xe=Yy=L,=M,=N,=0 and Z, = . (10)

Lastly, the linearized equations of motion in matrix form are
written as:

Xu
L 0 0 g 0 0 0 0
0 éf 0 0 0 0 0 0
M, 0 CM, 0 0 0 0 0
x=/ 0 0 1 o0 9 0 0 0 [x = Ax,
o 0 0 0o % 0 0 -g
0 0 0 0 ClL, ClL, CN, 0
0 0 0 0 GL, CL, GN, 0
Lo 0 0 0 O© 1 0 0
(11)
where,
I I
C — XZ — XX
V7 Lalpp—, 2 Ixx127_1x22 ’
_ L _ zz
C3 - Iyy ’ and C4 - Ixxlzz_lxzz (12)

are constants of body moments of inertia, state vector
x=(u,w,q,0,v,p,7,¢)T € R®, A is the system matrix of the
linearized dynamics, m is body mass, Iy, I, and I, are
moments of inertia about the body axes (xy, ¥p, Zp), Iy, 1S
the product of inertia (I,, and I, are zero, since the xz
plane is a plane of symmetry). Note that by choosing a
reference body frame with the same orientation as the stroke-
plane frame (Fig. 3), then using the estimations of stability
derivatives (in Table 1), we can decouple the hovering
dynamics into longitudinal (described by (u,w,q,8)T) and
lateral (described by (v,p,7,$)T) dynamics, as illustrated by
the structure of system matrix A.

RESULTS

Robotic wing experiments on flapping counter-
torques

Roll rotation

The time courses of the measured torques around the roll,
pitch, and yaw axes during roll rotation are shown in Fig. 4 (n
=0.35 Hz, wy, = 23%stroke, Re = 700). The torque production
with a static stroke plane (no roll rotation) is plotted for
comparison. With the roll rotation, the torques generated by the
left (inner) wing (blue curves, Fig. 4) are enhanced, but the one
generated by the right (outer) wing (red curves, Fig. 4) is
reduced. This asymmetry leads to a continuous total roll torque
(FCT) counter to the direction of turning (Fig. 4A, the time
course of predicted roll torque by Eqn. 3 is also shown for

comparison). The stroke-averaged value (filled green cycle,
Fig. 4A) is about 6% of the peak roll torque. Also, as predicted
by the FCT model (Annex A), the stroke-averaged pitch and
yaw torques are both close to zero (Fig. 4B and C), indicating
that there is no resultant torque about any axis perpendicular to
the roll axis.

100, A
Rall

Fig. 4. Aerodynamic torque time
courses during roll rotation. (A)-(C)
torques about roll (A), pitch (B), and
yaw (C) axes of the stroke-plane
P . frame. The torques generated by the
40 left and right wings are shown by blue
) and red curves. The total torques (right
100, B minus left) are shown by solid green
Pheh, curves, and the filled green cycles on
the ordinates represent their averages.
The predicted roll torque by the
flapping counter-torque (FCT) model
is shown by a dotted green curve in
100 (A). The black curves represent the
torque generation with a static stroke
plane (no roll rotation).

80
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In Fig. 5, we plot the stroke-averaged roll FCT as a
function of stroke frequency and angular velocity. The
measured FCT has a strong linear dependence on both
parameters and closely matches the theoretical estimates by
Eqn. 4. Moreover, as shown in Fig. 4A, the time course of the
predicted roll torque by the FCT model (dotted green) is similar
to that of the measured one (solid green). Notably, the measured
roll FCT has a delayed peak occurring after the mid-stroke,
where the moment of arm is at maximum. Because the roll
torque is associated with lift force, we expect that after the mid-
stroke the lift force may have a value higher than the one in the
mid-stroke, as observed in previous studies (Fig. 4 in [15]).

A

- Riiird Fig. 5. Stroke-averaged roll FCT.
£ 2 Firacicled (A) The stroke-averaged roll
g’ 4 FCT as a function of flapping
5 frequency is shown, and the

Reynolds number associated with

Re "o 200 40 oo soo 1000 each frequency is also plotted.
Frea(fizyo o1 02 03 04 05 (B) The stroke-averaged roll FCT

B as a function of angular velocity
is shown. The measured torques
are shown in filled black cycles
with their linear fittings (black
lines). The red lines represent the
predictions by Eqn. 4.

R#=0.9794

0 10 20 30 40
degs/stroke

Pitch rotation

During pitch rotation, the left and right wings have
symmetric wing kinematics that ensure a symmetric torque
production about the roll and yaw axes. Thus in Fig. 6, we plot
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only the time course of the measured pitch torque for a single
wing and compare the torque generation during upstroke to that
during downstroke (n = 0.35 Hz, w, = 23°%stroke, Re = 700).
The FCT model predicts that the pitch torque is enhanced
during the first half of downstroke (dorsal to middle) and
during the second half of upstroke (middle to dorsal), but it is
reduced during the other two quarter strokes (ventral to middle
and middle to ventral). However, the experiment results show
that pitch torque is reduced only during ventral to middle stroke
(first half of the blue curve, Fig. 6), and it is slightly enhanced
during dorsal to middle stroke (first half of the red curve, Fig.
6). In the other two quarter strokes, there is no considerable
change of pitch torque compared to those under no rotation.
Nevertheless, the observed torque asymmetries at different
quarter strokes still give rise to a substantial pitch FCT (solid
green, Fig. 6), although its time course is different from the
prediction (dotted green, Fig. 6).

O Ypstroke Fig. 6. Aerodynamic torque time
Downstioke courses about pitch axes during
pitch rotation. The torques during up
and down strokes are shown by blue
and red curves. The total torques
(red minus blue) are shown by solid
green curves, and the filled green
cycles on the ordinates represent
their averages over one stroke. The
predicted pitch torque by the FCT
model is

Middle stroke

b

Measured
Predicted

Fig. 7. Stroke-averaged pitch FCT.
(A) Stroke-averaged pitch FCT as a
function of flapping frequency (or
Reynolds number) and (B) angular
velocity. The measured torques are
shown in filled black cycles with

their linear (black lines) and
\ quadratic  (dotted black curve)
fittings. Red lines represent the
predictions by Eqn. 5.
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Fig. 7 shows the stroke-averaged pitch FCT as a function
of stroke frequency and angular velocity. Although the linear
dependency of FCT on angular velocity is still valid during
pitch rotation (Fig. 7B), the relationship between pitch FCT and
stroke frequency is better fitted by a quadratic function (Fig.
7A). The theoretical predictions, however, greatly
underestimate the measured value. As will be discussed later,
the failure of the prediction might result from the unmodeled
aerodynamics occurring at the start of each half-stroke, where
most of the variations of pitch torque are observed (Fig. 6).

Yaw rotation

During yaw rotation, the torque produced by the inner
(left) wing (blue curves, Fig. 8) is enhanced during upstroke
and reduced during downstroke; in contrast, the torque
produced by the outer (right) wing (red curves, Fig. 8) is
enhanced during downstroke and reduced during upstroke. This

asymmetry leads to a continuous yaw FCT production over an
entire stroke (Fig. 8C; the time course of the predicted yaw
torque by Eqn. 1 is also shown for comparison). The stroke-
averaged value is about 19% of the peak yaw torque (filled
green cycle, Fig. 8C). Similar to roll and pitch FCT, the yaw
FCT acts collinearly with the yaw axis because there is no
resultant torque around the roll and pitch axes (filled green
cycles, Fig. 8B and C). Unsurprisingly, the measured yaw FCT
linearly increases with the stroke frequency and angular
velocity (Fig. 9) and closely matches the theoretical estimates
by Eqn. 2.

1so0r A

Roll Left

Fig. 8. Aerodynamic torque time
courses during yaw rotation.
(A)-(C) torques about roll (A),
pitch (B), and yaw (C) axes of
: the stroke plane frame. Refer to
ol the legend of Fig. 4 for details.

100}

50+

0%

>

s0r B

Measured
Predicted

o
=
Torque (N mm)

5. R2=0.9886

Torgue (N mm)

il ; ; Re 0 200 400 600 800  100(
Freq.(Hz) 0 01 02 03 04 05

R?=0.9964

0 10 20 30 ElS

Stroke oycle

Fig. 9. Stroke-averaged yaw FCT. Refer to the legend of Fig. 5 for details. Red
lines represent the predictions by Eqn. 2.

Flight stability at hovering

Non-dimensional stability derivatives (with nonzero
values) are calculated based on the analytical estimations (Table
1) and fruit fly morphological and kinematic data. The results
are summarized in Table 2.

TABLE 2. NON-DIMENSIONAL STABILITY DERIVATIVES

Xe Yz Ly Ly Mg Mg N

-1.48 -139 -1.58 -0.56 087 -0.19 -092 -1.36

With the stability derivatives known, the system matrix A
in Eqn. 11 is calculated, then the eigenvalues and corresponding
eigenvectors can then be obtained accordingly. Table 3 lists the
dimensional (4;) and non-dimensional (1]") eigenvalues.

The longitudinal dynamics consist of a fast stable
subsidence mode (mode 1), an unstable oscillatory mode (mode
2), and a slow stable subsidence mode (mode 3), which are
consistent with the previous CFD results [19]. The fast
subsidence mode corresponds to an in-phase coupling of du
and 6q , which results in a pitch down (up) motion
accompanied by a forward (backward) translation with
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decaying magnitudes. The unstable oscillatory mode
corresponds to a near out-of-phase coupling of sut and §g*
(phase difference is larger than 125°); therefore, in large part of
an oscillating cycle, the insects pitch up (down) while moving
forward (backward), also refers to [19]). Intuitively, for the in-
phase coupling of initial du and &q, pitch FCT and the pitch
torque generated by FCF (AF,_,; X l;) act together to reduce
the angular velocity &g, resulting in stable subsequent motions.
For the out-of-phase coupling of du and &q, however, the
pitch torque induced by FCF (AF,_,s X ;) acts in the same
direction as dq, thus magnifying the pitch angular velocity and
causing the instability (see Discussion). Slow subsidence (mode
3) corresponds to a damped ascending/descending motion
resulting from the FCF in a vertical direction.

TABLE 3 DIMENSIONAL AND NON-DIMENSIONAL
EIGENVALUES

Longitudinal Lateral
Mode 1 Mode2  Mode3  Mode 4 Mode 5 Mode 6
14.17 + 9.12+
A -39.15 30.62i -5.11 -143.02 3485 -43.30
¥ 0.067 £ 0.043 +
A -0.18 014 -0.024 -0.67 016 -0.20

Eigenvalues (dimension of Hz) are non-dimensionalized by dividing
the flapping frequency n. The inverse of Re(4;) and Re(A}) indicate
the dimensional and non-dimensional time constants of the
corresponding mode.

Similar to the longitudinal dynamics, the lateral dynamics
consists of two subsidence modes with relative fast (mode 4)
and slow (mode 6) convergences and an unstable oscillatory
mode (mode 5). The fast subsidence mode corresponds to a
highly damped yaw rotation (the larger value of A} means less
wing-beat time to reduce the initial disturbance, Table 3) with
an out-of-phase coupling of v and p. The slow subsidence
mode has a similar out-of-phase coupling of dv and 8p (with
difference magnitudes), but with less damped yaw rotation. The
unstable oscillatory has a near in-phase coupling of dv and
6p. Intuitively, for the out-of-phase coupling of initial dv and
6p, roll FCT and the roll torque generated by FCF (AFp_yg X
l,) act together to reduce the angular velocity dp, resulting in
stable subsequent motions. For the in-phase coupling of v
and &p, however, the roll torque induced by FCF (E’;S_ X ly)
acts in the same direction as &p, thus magnifying the roll
angular velocity and leading to an unstable subsequent motion.

DISCUSSION

Effects of unsteady aerodynamics on flapping
counter-force/torque production

In the FCT models (Eqns. 1 to 5), we considered only the
translational aerodynamic force resulting from the delayed stall
and ignored other aerodynamic mechanisms [20]. Previous
works show that most of those unsteady aerodynamic
mechanisms alter the aecrodynamic force transients near stroke

reversals. For example, the Kramer effect generates rotational
forces before or after stroke reversals, depending on the phase
of wing rotation, but wake capture occurs immediately after the
stroke reversals [15].

As indicated by the plots of instantaneous torques about
roll, pitch, and yaw axes (Figs. 4, 6, and 8), the peaks of roll
and yaw torques occur near the middle stroke where their
moments of arm are maximized. Pitch torque, however, reaches
peak between the stroke reversal and the middle stroke.
Therefore the unsteady aerodynamic effects, especially the
wake capture, are most likely to affect pitch torque transients at
the two quarter strokes after stroke reversals (ventral to middle
and dorsal to middle strokes, Fig. 6). The roll and yaw torques,
however, might be less affected by those unsteady effects. This
might explain the discrepancy between the measured and the
predicted pitch FCT (solid and dotted green, Fig. 6), especially
at the two quarter strokes after the stroke reversal.

Flapping counter-torque and stability derivatives
during free flight

In the current study, we assumed a constant angular
velocity during rotations around each principal axis of the
stroke-plane frame and measured the corresponding FCT over
one wing stroke. In free flight, however, the insect is expected
to experience a time-varying angular velocity on non-principal
axes. Previous simulation results suggest that a rotation about a
non-principal axis would also yield an FCT that linearly
depends on both stroke frequency and angular velocity.
However, it will be very difficult to obtain mathematical
models for such rotations.

Furthermore, how FCTs depend on the accelerations is still
undetermined. Although the FCT and FCF models can be used
to estimate the first derivatives with respect to time (e.g., X),
we are unable to estimate the second derivatives (e.g., Xy). For
fixed and rotary aircraft, such stability derivatives are important
under some flight conditions (short-period mode, for example),
in which the time constant associated is so short that the
acceleration becomes critical to aerodynamics [17, 21].
However, it is still reasonable to assume that the first
derivatives dominate the aerodynamics in most flight
conditions [17, 21].

It should also be pointed out that by applying the small
perturbation theory to approximate aerodynamic torques, we
also neglected the nonlinear terms with higher orders, such as
Zyz,Zy2, Zyz, Zgz2, and Z,2. The estimation of these terms can
be directly obtained in the FCF or FCT model. For example, it
can be shown that Z,2 and Z,2 are equal to

pRECy (0p)cos2(¢p) and pRECy (0p)sm2(¢h), respectively.

Aerodynamic damping during non-hovering flight

By assuming the hovering condition in our study, we
consider that the effect of body velocity on flapping-wing
aerodynamic model is negligible; therefore the previous quasi-
steady aerodynamic model [15] is applicable. However, in non-
hovering flight, i.e., forward flight with high advance ratio, the
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aerodynamic model needs revision to give better estimations.
Unfortunately, the understanding of the flapping-wing
aerodynamics in non-hovering flight is now very limited. With
respect to the forward flight, Dickson and Dickinson (2004)
studied the effect of advance ratio on revolving wings and
modified the quasi-steady aerodynamic model. This result can
be directly applied to estimate the FCF in forward and
backward translations based on Eqn. 6, with the revised lift and
drag coefficients (by taking account of tip velocity ratio u,).
Similar to forward flight, vertical and lateral flights are very
likely to have non-negligible effects on the aerodynamics. For
example, in rotary wing aircraft a vertical descent changes the
aerodynamics by reducing the downward momentum produced,
and it greatly affects the lift force [17, 21]. A large descending
velocity can even lead the flight into a so-called vortex-ring
state, which is characterized by unstable flow conditions with
erratic lift variations. Therefore an understanding of the
aerodynamics, as well as the measurements of the force
coefficients during non-hovering flight conditions, is desirable
for further investigation of insect flight dynamics. However, as
an approximation of the flight dynamics, our models provided
an applicable analytical tool, which is important to designing
the controllers for the flapping-wing MAVs, as well as to
understanding the control strategies adapted by flying insects.
For example, in the aircraft controller design, the uncertainties
resulted from the neglected aerodynamics can be simply
viewed as a disturbance term, which can be compensated by
appropriate robust control strategies.

ANNEX A

A mathematical model of FCT for yaw rotation has been
described in previous studies [1, 2]. In this appendix, we
provide a derivation of FCT models for roll and pitch rotations.
For simplification, wing deviation is not considered in the
current study. First, with a standard blade-element model, the
lift and drag of a single flapping wing at a particular instant in
the wing stroke cycle [15, 22] are:

Fu(®) = =3 CL(a(®)pREFF U2, (AD)
Fo() = =3 Co(a(®)pReZ (U (B2, (A2)

where U(%) is the magnitude of the wing tip velocity at non-
dimensional time £, #,(S) is the non-dimensional second
moment of wing area, C,(a(f)) and Cp(a(f)) are
instantaneous lift and drag coefficients [15] as functions of
effective angle of attack a(f), p is fluid/air density, R is
wing length, and ¢ is mean chord length. Roll, pitch, and yaw
torques around the center of gravity are then calculated as:

Trull(f) =Fn= FL(f)Rfcp COS(¢)> (A3)
Tpiten () = Fi1y, = F(E)R7., sin(e), (A4)
Tyaw(f) =k, =F (f)Rpr, (AS)

where ¢ is stroke position and 7, is the normalized center of
pressure on the wing. We assume that the center of pressure is
located at 70% along the wingspan at any instant of time [12].

Note that roll and pitch torques are determined only by lift
force (F1), but yaw torque is determined only by drag force
(Fp). Each moment of arm is determined by the orthogonal
distance between the center of pressure and the corresponding
principal axis (1, 7, and r;). Notably, it can be shown that
equations A3-AS5 describe the torque productions regardless of
the location of center of gravity, as long as we assume that it is
below the wing base and along the yaw axis zg.

Roll rotation

Rotation around roll axis x; adds a downward velocity
(always normal to the stroke plane) to the left wing while
increasing its effective angle of attack «. On the contrary,
however, it adds an upward velocity to the right wing and
reduces its effect angle of attack. Therefore we write the lift of
the left wing and the right wing as:

Fioi(®) = 5 Cy (o + )sin ()pREFZ(S)(U,* + Uy, (A6)
Fyr(8) = 3 Cy(ctg — )sin (@)pREFF(S)(U2 + U}, (A7)

where a is the geometric angle of attack determined by wing
kinematics, 1 is the angle between the stroke plane and total
wing velocity U, and U, and U; are magnitudes of wing tip
velocity as a result of wing flapping and roll rotation,
respectively:

Uy =C|2|rR and U, = w,Reos (), (A8 and A9)
where % is the non-dimensional angular velocity of the wing,

® and n are wing-flapping amplitude and frequency, w,s is
the roll angular velocity of the stroke plane, and ¢ is stroke
position. Furthermore, 1 is given by:

¥ = arctan (5—L) ~ 2xs05(9) (A10)

I
¢"|di|

The magnitude of wing velocity can then be written as:

o= Jw, oy = e - Sl (All)
= WUw i)_cos(w_ cos@)

Collectively, the roll torque of the left and right wings are

calculated as:
1 )\’

Troll—l(f) = _ECN(aO + ll})Sin ((p)pR4Ef'22 (S)prCOS (¢) < Czs (jf)) > (Alz)

(Pl

2
Troll—r (E) = %CN (0‘0 - 1/)) Sin((p) pR‘lffzz (S)fcp COS(¢) ( Cis(ll’) ) . (A13)

We then approximate Cy(a, + ) as:

Cula ) = Cy(ap) + 900 Zoxscostd) (A14)

da ¢
lag d)n‘ at

The total roll torque of a wing pair is:

Trull(f) = Troll—l(f) + Troll—r(f)

~ 2@ gy (@)pR*ctF (S)F:y, cos? () |%| Pnwy,, (A15)

2 da g
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which is the FCT for roll rotation at a non-dimensional time £.
The averaged value over one wing stroke is:

dcn(@)
da g

Tron = —ipR“Efzz(S)fcp sin (@) cos?(¢) |%| DPnwyg. (A16)

0

Moreover, it is easy to see that because of the geometric
symmetry for lift and drag production, we have

Tpieeh = Tyaw = 0. (A17)

Pitch rotation

Similar to roll rotation, we now derive the FCT during
pitch rotation. For either left or right wing the effective angle of
attack a is enhanced during the first half of downstroke
(dorsal to middle stroke) and the second half of upstroke
(middle to dorsal stroke), and it is reduced during the second
half of downstroke (middle to ventral stroke) and the first half
of upstroke (ventral to middle stroke). Therefore when the wing
is located at the dorsal half of the stroke plane, the
instantaneous lift of a single wing (i.e., left wing) can be
written as:

FL—l—dorsal(f) = %CN(QO +)sin (q))pREfZZ(S)(UWZ + Uiz)- (A18)

Similarily, when the wing is located at the ventral half of the
stroke plane, the instantaneous lift of a single wing (i.e., left
wing) is written as

Fictventrat(B) = 5 Cn (@ — )sin (@)pREFF(S)(U,* + U). (A19)

The angle between the stroke plane and the total wing velocity
U is given by:

¥ = arctan (%) U ILLCON (A20)

do)|
‘D"‘ at

l

where w,s is the pitch angular velocity of the stroke plane.
Therefore we have the pitch torques:

ol
2 1 . —n P
Tpitch—l—dorsal (t) == E CN (“0 + IIJ)Sm ((p)pR4C722 (S)rcpsm (¢) < C(Z)S Li; ) s

)
2 1 . —a N .
Tpitch—l—ventral(t) = ECN(aO - IP)SIH ((p)pR4CT22 (S)rcpsm (¢) ( C(ZJS th) > .

(A21 and A22)

Next we approximate Cy(@q ), as in Eqn. Al4, and sum
the pitch torques at two instants of time, which correspond to
the symmetric stroke positions with respect to the mid-stroke:

Tpitch—l—darsal(f) + Tpitch—l—ventral(fr)

= - 14a@ gy (@)pR*crZ (S)F., sin®(¢) |%| DPnwy;. (A23)

2 da g,

We then have the averaged pitch torque of a wing pair over
a complete stroke:

Tpiech = Ti—pitch T Tr—pitch =

1 _a . dey(a) d¢
—EpR“crz2 (O gaa g S0 () sin2(¢) |d—q:| Pnwy;. (A24)

Furthermore, it is easy to see that during pitch rotation the
left and right wings have symmetric wing motions; therefore

symmetric torque generations around the roll and pitch axes are
expected:

Trotl = Tyaw = 0. (A25)

ANNEX B
Similar to FCT mathematical models, in this Appendix we
provide a derivation of FCF for body translation along the roll
(forward/backward), pitch (lateral), and yaw (vertical) axes of
the stroke-plane frame.

A & © o B
T - @: = » C
Y .

v Uy A i
Down g " Down

A *, &

oo 1By gL g N s \ 5 F
i ] %% N 3
. Q . R " P >
. 8/ ) u\p 7/ 3 - I O

v O \ it o \
/14 ®, 4 e— : ~—a
K v & 1 & r‘ ¥ i Y

FCF

Fig. Al. Schematic view of FCF production during forward/backward (A),
lateral (B), and vertical translations. Red arrows denote directions of the wing
velocity (solid for upstroke, dashed for downstroke), and green arrows denote
the body translational velocity. FCF (blue arrows) acts opposite to the body
translation, as indicated by the enhancement (positive signs) and reduction
(negative signs) of force production.

Forward/backward translation

A derivation of FCF induced by forward/back motion can
be directly obtained, based on previous results from [7]. By
applying blade element theory, the instantaneous drag acting on
a wing can be written as:

Fo(®) = 2pSCo(a0) (RL) (G2(S) + 20 (S)p + 1:2), (B1)

where u, is the tip velocity ratio in forward/backward
translation, which is defined as:

e = 28, (B2)

From Fig. A1A, we can see that in backward motion pu, is
negative during downstroke and positive during upstroke (vice
versa for forward motion). Therefore,

Foup(®) = £pSCo00) (RL)” (2(5) + 201 ()liel + ), (B3)

Fo-doun(® = 1pSCo(a0) (R22)" (72(5) = 201 () lal + 1?). (B4)

And then we sum the drag (of a single wing) along x, axis at
two instants of time corresponding to an identical stroke
position:

_FDfup(f) COS(¢’) + FD*down(fr) CO§(¢)

= —pR2EAL(S)DnCp(0) cos? (¢h) |§ Vs (B5)

By averaging more than one wing stroke, the net drag of a wing
pair is:

AF,_,s = —pR2C#L(S)DnCp (ag)cos?(¢) |% Vyse (B6)

Moreover, we can easily obtain the change of lift resulting from
forward/backward motions:

AF, = pRECy(a)cos? (9)vys?. (B7)
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Note that the above equations also apply to the forward
translation.

Lateral translation

Similar to forward translation, the instantaneous drag
acting on a wing during lateral motion can be written as:
(B8)

Fo(8) = 2pSCo a0) (RE2)” (GE(S) + 271 Sty + 1,2),

where u, is the tip velocity ratio in lateral translation, which is
defined as:

vyssm(zp)

= (- G (B9)

where i =0 and 1 for the left and right wings, respectively. We
can see in Fig. A1B that during a lateral motion to the right
(left), the net drag of a wing pair along the pitch axis y; is
always pointing to the left (right) at any instant of time (i.e., an
enhanced drag to the left (positive w,) and decreased drag to
the right (negative p,) during downstroke at ventral half of the
stroke plane, Fig. A1B). Collectively, we have

BFy_ys(B) = —pR2TF (S)OnCy (ag)sin? (9) |22] vy, (B10)
and the stroke averaged value is:

BFyys = —pREGH(S)ONCy (ap)sin($) [ 2] vy, (B11)
Moreover, the change of lift because of lateral motions is:
BF; = pREC, (a2 (@)%, (B12)

Vertical translation
A vertical translation changes the effective angle of attack
at a wing section by:

Y= arctan( | )

where ¥ is the angle between total wing velocity, and the
stroke plane r is the spanwise location of the wing section.
The magnitude of total wing velocity is:

(B13)

rfel ap\?
U=t |(r) v (B14)
Thus the sectional lift force during ascent is given by:
4R, @ = 2p(r)e(r)Cuao — ¥)sin () LDy (B15)

cos (1)

Furthermore, the change of the sectional lift force resulting
from vertical velocity is:

AR, (B) = 2p(@n)e) @ |22 [evtan - ) () Gulan)|sin (9,

den(@ v] (B16)
la=a

Integrate the above equation over an entire wingspan, and we
have the net lift change of a wing pair:

= = 2p(dn)cIr [%]sin (¢) [

AF (D) = ——pchd) |d¢ din (a)l _ sin (@) A (S)vs- (B17)

10

The stroke averaged value is:

dCN (‘1)

AF, = —%pR2 7L(S)on —1= _ sm (@) |§| Vg (B18)
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