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Abstract
In this paper, we study sensor fusion for the attitude stabilization of micro aerial vehicles, particularly me-
chanical flying insects. Following a geometric approach, a dynamic observer is proposed that estimates
attitude based on kinematic data available from different and redundant bioinspired sensors such as hal-
teres, ocelli, gravitometers, magnetic compass and light polarization compass. In particular, the traditional
structure of complementary filters, suitable for multiple sensor fusion, is specialized to the Lie group of
rigid-body rotations SO(3). The filter performance based on a three-axis accelerometer and a three-axis
gyroscope is experimentally tested on a 2-d.o.f. support, showing its effectiveness. Finally, attitude stabi-
lization is proposed based on a feedback scheme with dynamic estimation of the state, i.e., the orientation
and the angular velocity. Almost-global stability of the proposed controller in the case of dynamic state es-
timation is demonstrated via the separation principle, and realistic numerical simulations with noisy sensors
and external disturbances are provided to validate the proposed control scheme.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
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1. Introduction

The development of unmanned aerial vehicles has been a very active area of re-
search for both civil and military applications. Many remarkable achievements have
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been obtained with large fixed and rotary aircraft; however, their use in many tasks
is limited by their maneuverability and size. In order to overcome these limita-
tions, the extraordinary flight capabilities of insects have inspired the design of
small micro aerial vehicles (MAVs) and, in particular, of inch-size robots with
flapping wings mimicking real flying insects [1]. Their unmatched maneuverabil-
ity, low fabrication cost and small size make them very attractive for cost-critical
missions in environments that are impenetrable for larger size UAVs such as heli-
copters or airplanes. Moreover, the latest progresses in insect flight aerodynamics
[2] and in micro-technology [3] are providing sufficient tools to fabricate flying
insect micro-robots, as shown by the recent take-off of a flapping flight robotic in-
sect [4]. Although many problems remain to be solved in terms of fabrication and
electromechanical design, the next fundamental challenge to be undertaken is the
design of control architectures and algorithms to control and navigate flapping flight
robotic insects. It has been observed by biologists that insects can control the gen-
eration of forces and torques by modulating the wing kinematics trajectories [2, 5].
This observation has suggested the use of averaging theory tools and a bioinspired
parameterization of the wing kinematics to decouple the wing control design from
the attitude control design [6, 7]. This approach has been shown successful also in
other biomimetic forms of locomotion, e.g., fish swimming [8], and greatly simpli-
fies the design of an autonomous navigation systems, since it naturally leads to a
hierarchical architectures [7].

Based on these considerations, in this paper, we focus on the design of attitude
control that uses as inputs the signals coming from bioinspired sensors such as
ocelli, halteres, magnetometers and gravitometers. The ability of controlling atti-
tude in a robust and stable manner is fundamental for the design of path planning
and navigation control schemes. Previous work exists in this context. For instance,
in Ref. [9] the authors propose a static output feedback scheme for hovering re-
covery; however, this scheme is sensitive to measurement noise and external distur-
bances, and moreover cannot be easily extended to attitude maneuvering or control
schemes based on body orientation. Rifai et al. [10] provide an attitude control
scheme that takes into account saturation limits, but they do not consider sensors
and assume to have access to exact body orientation and angular velocity. Finally,
Epstein et al. [11] propose a dynamic output feedback schemes based on a lin-
earized model of the insect dynamics suitable for longitudinal control or other
simple flight modes, but not for more aggressive maneuvers. Here, we propose a
dynamic output feedback control scheme that is globally stable and that is based on
state estimation from redundant measurements, making it more robust to external
disturbances and measurement noise. In particular, we show that we can decouple
the orientation estimation problem from the attitude control problem. Although this
separation principle is classical for linear dynamical systems, it is hard to guarantee
for general nonlinear systems and, in particular, for the Lie group of rigid-body ori-
entations SO(3). Although this scheme has been specifically designed for robotic
flying insects with bioinspired sensors, it is rather general and can be used also
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for more traditional UAVs as long as the output signals are ‘linear’ in the rotation
matrix, as explained later. In fact, this scheme has the advantage of being glob-
ally stable differently from more traditional control strategies based on extended
Kalman filters (EKFs).

As for the outline of the paper, Section 3 briefly describes the attitude dynamics
of a robotic flying insect and reviews navigation sensory systems of real insects.
Section 4 presents a complementary filter for sensor fusion as well as the experi-
mental validation of its performance. Section 5 proposes a control feedback based
on the dynamic attitude estimation that is proven to be globally stable via the
separation principle and it is tested using realistic numerical simulations. Before
proceeding some mathematical background is presented.

2. Mathematical Background

This section briefly describes the notation and several geometric notions that will
be used throughout the paper. For additional details, the reader is referred to texts
such as Refs [12–16].

2.1. Basic Definitions

As shown in Refs [12, 13], the natural configuration space for a rigid body is the
Lie group SO(3), i.e., the configuration of a rigid body can always be represented
by a rotation matrix R, i.e., a matrix such that R−1 = RT and detR = +1.

Consider now the coordinate frames R
3
S and R

3
B:

• R
3
S ≈ R

3: the space coordinate frame, or initial configuration frame.

• R
3
B ≈ R

3: the body frame, which is attached to the body (can be thought of as
defined by the sensors sensitive axis), initially coincident with the space frame.

An element R of SO(3) can be thought of as a map from the body frame to the
space frame, i.e., R : R3

B → R
3
S.

A trajectory of the rigid body is curve R(t) : R → SO(3). The velocity vector
Ṙ is tangent to the group SO(3) in R but, as shown in Refs [12, 13], rather than
considering Ṙ, two important quantities are worth to be considered:

• ṘRT: representing the rigid body angular velocity relative to the space frame.

• RTṘ: representing the rigid body angular velocity relative to the body frame.

These are both elements of the Lie algebra so(3), i.e., the tangent space to the
group SO(3) at the identity I .

Elements of the Lie algebra are represented by skew-symmetric matrices. Sys-
tems on Lie groups described in terms of body (space) coordinates are called
left-invariant (right-invariant).

• Left-invariance. Let R1(t) be a trajectory of a rigid body relative to a space
frame R

3
S1

. Consider a change of space frame G : R3
S1

→ R
3
S2

, now R2(t) =
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GR1(t) represents the same trajectory but with respect to the new space frame.
It is straightforward to verify that RT

2 Ṙ2 = RT
1 Ṙ1, i.e., the angular velocity rel-

ative to the body frame RTṘ does not depend on the choice of space frame.

• Right-invariance. Similarly, it can be shown that the angular velocity of a rigid
body relative to a space frame ṘRT does not depend on the choice of coordinate
frame attached to the body.

In the case of SO(3), there exists [13] an isomorphism of vector spaces
·̂ : so(3) → R

3, referred to as the hat operator, that allows writing so(3) ≈ R
3. For a

given vector a = [a1 a2 a3]T ∈ R
3, we write:

·̂ : a =
[

a1
a2
a3

]

−→
[ 0 −a3 a2

a3 0 −a1
−a2 a1 0

]

= â. (1)

Denote (·)∨ : R3 → so(3) its inverse, referred to as the vee operator:

(·)∨ : â =
[ 0 −a3 a2

a3 0 −a1
−a2 a1 0

]

−→
[

a1
a2
a3

]

= (̂a)∨. (2)

The Lie algebra is equipped with an operator, the Lie brackets [·, ·], is defined by
the matrix commutator:

[̂a, ĉ] = â ĉ − ĉ â = â × c, (3)

where a, c ∈ R
3, â, ĉ ∈ so(3) and × is cross-product in R

3.
Given a finite-dimensional vector space V , let V ∗ be its dual space, i.e., the

space whose elements (covectors) are linear functions from V to R. If σ ∈ V ∗, then
σ :V → R. Denote the value of σ on v ∈ V by 〈σ ,v〉, i.e., the pairing operator
〈·, ·〉 :V ∗ × V → R.

If V = R
n then V ∗ 	 R

n. For all v ∈ V and σ ∈ V ∗ 	 Rn then:

〈σ ,v〉 = σTa
(4)

〈σ̂ , v̂〉 = 1

2
trace(σ̂ T̂v).

2.2. Metric Properties of SO(3)

In what follows, the necessary background and geometric tools are reviewed in
order to define a norm (a distance) on SO(3). This will be used later to prove con-
vergence of the proposed feedback.

On a general manifold M , a positive definite quadratic form 〈〈ξ1, ξ2〉〉TxM de-
fined on any tangent space TxM 
 ξ1, ξ2 (the space tangent to M in x ∈ M) is
called a Riemannian metric [12]. It is the equivalent of the scalar product in R

n and
can be used to measure the distance between different points of a manifold; in me-
chanics a metric is tightly linked to the definition of kinetic energy [16]. A metric
is an extra structure and does not come with the manifold. Many different metrics,
i.e., many different distance measures, can be defined on the same manifold [12].
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Lie groups are, by definition, manifolds and, therefore, are entitled to posses
metric properties. Lie groups, in particular SO(3), are structured in such a way that
some metrics naturally arise (natural means that it does not depend on a particular
choice of coordinates). A left-invariant metrics does not depend on the choice of
the space frame, i.e., it only needs to be defined on the Lie algebra and then it can
be left-translated to the tangent space at any other group element:

〈〈Râ, R̂c〉〉TRSO(3) = 〈〈̂a, ĉ〉〉so(3),

where R ∈ SO(3) and â, ĉ ∈ so(3).
Still, there many choices for a metric in the Lie algebra — as many as there are

positive definite matrices P :

〈〈̂a, ĉ〉〉so(3)
�= aTP c,

where a, c ∈ R
3 correspond to â, ĉ ∈ so(3) as in (1). However, there only exists one

choice (up to a coefficient [12, 13, 16, 17]) when the metrics needs to be bi-invariant
(i.e., both right- and left-invariant):

〈〈̂a, ĉ〉〉so(3)
�= aTIc = aTc = 〈a, c〉, (5)

where I is the 3 × 3 identity matrix.
Two main results provided in Ref. [17] are:

• The existence of a natural norm (which measures the distance between R and
the identity I ) on SO(3):

‖R‖SO(3) = 〈〈̂φR,̂φR〉〉1/2
so(3) = ‖φR‖R3 . (6)

• A formula for computing its time derivative on the Lie algebra so(3):

1

2

d

dt
‖R(t)‖SO(3) = 〈〈̂φR,RTṘ〉〉so(3)R

T >so(3), (7)

where ̂φR ∈ so(3), also referred to as logR, is defined as the angular velocity
that takes the rigid body from I to R ∈ SO(3) in one time unit; see Ref. [13] for
details on the logarithmic map:

̂φR = logR = θR

2 sin θR

(R − RT), (8)

where, for trace(R) �= −1, θR satisfies 1+2 cos θR = trace(R) and ‖φR‖2 = θ2
R ,

and the Rodrigues formula:

R = exp(̂φR) = I + αR
̂φR + βR

̂φ
2
R, (9)

where αR = ‖φR‖−1 sin‖φR‖ and βR = (1 − cos‖φR‖)‖φR‖−2.

3. Biologically Inspired Robotic Housefly

In this section we review the most important features of a micromechanical flying
insect, summarizing some of the results presented in Refs [6, 7].
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3.1. Dynamics of the Micromechanical Flying Insect

Insect flight dynamics is still a very active area of research. In particular, there is
great interest in understanding the unsteady state nature of flapping wings aerody-
namics, which is believed to be source of the high maneuverability of insect flight
as compared to fixed-winged vehicles and helicopters [18]. A detailed discussion
of flying insect aerodynamics and modeling is beyond the scope of this paper, and
we address the interested readers to the recent paper by Deng et al. and references
therein [6]. Here, we simply summarize some results relevant to our discussion on
attitude stabilization.

Since the mass of the wings is negligible with respect to the body mass, the
dynamics of a flying insect can be modeled as the dynamics of a rigid-body subject
to external forces and torques. In particular, as long as attitude is concerned, the
dynamics is described by:

J ω̇ = τ aero − ω × Jω, (10)

where J is the moment of inertia of the insect, τ aero is the total external torque with
respect to the insect center of mass in the body frame due to the aerodynamic forces
generated by the flapping wings and ω is the angular velocity with respect to the
body.

The dynamics of (10), affine with respect to the forcing input τ aero, can be aver-
aged out as in Ref. [7]. The time-varying components of the torque can be neglected
while the mean value of the torque τFB will be used as the feedback (FB) term for
attitude stabilization. As this term depends upon the current orientation R and the
current angular velocity ω, the averaged attitude dynamics of a mechanical flying
insect are described by the system:

{

Ṙ = Rω̂
ω̇ = J−1(Jω × ω + τFB(R,ω)),

(11)

where the .̂ hat operator transforms the ω vector into a skew-symmetric matrix ω̂
and (R,ω) is an element of SO(3) × so(3), i.e., the product space of the Lie group
SO(3) of rigid body rotations and its algebra so(3).

3.2. Sensory System of Flying Insects

The highly specialized sensory system of flying insects is at the base of their extra-
ordinary flying performance. In fact, flying insects can rely on an heterogeneous set
of redundant sensors for controlling flight maneuvers and navigate the environment.
Redundancy is the key to robustness. Some of these sensors represent a rich source
of inspiration for the design of mechanical flying insects [6, 19] and they motivate
the control strategy proposed in this work.

3.2.1. Halteres
The halteres are club-shaped small appendages behind each wing that oscillate in
anti-phase with respect of the wing, as shown in Fig. 1. The plane of oscillation
is slightly tilted toward the tail of the insect to be able to measure Coriolis forces
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Figure 1. Photo of a fly haltere. Courtesy of Ref. [23].

along all three body axes [20]. The halteres function as tiny gyroscopes and through
appropriate signal processing [21] they can reconstruct the body angular velocity
vector:

yhl = ω. (12)

Recently, preliminary prototypes of micro-electromechanical halteres have been
fabricated and have shown promising results [22].

3.2.2. Mechanoreceptors
Many parts of the insect body such as wings, antennae, neck and legs are innervated
by campaniform sensilla. These cells can measure and encode pressure forces when
they are stretched or strained [24]. For example, sensilla at the base of wing hinges
can measure aerodynamic forces, which are used to fine-tune the wing motion.
Similarly, the sensilla on the legs might be used to measure the gravity sensor, thus
acting as a gravitometer. Therefore, in static conditions, insect can measure the
gravity vector with respect to the body frame, i.e.:

yg = RTg0, (13)

where g0 are the (known) gravity vector components, measured with respect to
the fixed frame. In non-static conditions, also non-inertial accelerations add up to
the output of mechanoreceptors, as a form of disturbance. Combining information
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Figure 2. Photo of a fly’s head showing compound eyes and the ocelli with its three photoreceptors.
Courtesy of Ref. [26].

from mechanoreceptors and halteres (sensor fusion) can greatly alleviate the effects
of such disturbances.

3.2.3. Ocelli
The ocelli are three additional light-sensitive organs located at the vertices of an
imaginary triangle on the middle of head of the insect as shown in Fig. 2, and
provide signals that are used for stabilization with respect to the rapid perturbations
in roll and pitch [19]. In fact, these sensors collect and measure light intensity from
a portion of the sky, and they estimate the position of the sun with respect to the
insect body by comparing the signals from the left and right ocelli to estimate the
roll angle, and by comparing the signal from the forward-looking ocellus with the
mean of the signals from the left and the right ocelli to estimate the pitch angle [25].

3.2.4. Compound Eyes
The compound eyes of the insects are an advanced vision system that processes dif-
ferent types of signals needed for the optomotor systems. In fact they can process
the visual stimuli to estimates angular velocities thanks to large-field neurons that
are tuned to respond to the specific patterns of optic flow that are generated by
yaw, roll and pitch [27], as well as body orientation and position by higher-level vi-
sual processing like object fixation and landmark detection for navigation and path
planning [11]. However, such signals require quite a specialized signal processing
system that might not be necessary for attitude stabilization, which is the objective
of this work. However, the dorsally directed (upward-looking) regions of the com-
pound eyes of many insects are equipped with specialized photoreceptors that are
sensitive to the polarized light patterns that are created by the sun in the sky. More
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precisely, insects can measure their orientation relative to the direction of the light
polarization: p0 ∈ R

3, as:

yp = RTp0. (14)

Differently from the ocelli, the light polarization direction is not affected by light
intensity. Bioinspired polarized light compasses are easier to fabricate than the full
insect visual system, and have been successfully fabricated and used for robot nav-
igation [28], and are relevant to the flight control design proposed in this work.

3.2.5. Magnetic Compass
Recent studies indicate that some insects can also detect the Earth’s magnetic and
this is used to maintain a desired heading direction [29]. Similarly to the light po-
larization sensor, we can argue that insects can measure the components of the
magnetic field with respect to the body as follows:

ym = RTb0, (15)

where b0 ∈ R
3 is the direction of the magnetic field relative to the fixed frame.

A possible electromechanical implementation of a magnetic compass suitable for
small-size vehicles is given in Ref. [30].

4. Sensor Fusion via Complementary Filters

The sensory system of real insects is clearly redundant, e.g., kinematic quantities
such as the angular velocity are derived from more than one sensor. Information
from different sensors is then ‘fused’ together. Complementary filters traditionally
arise in applications where redundant measurements of the same signal are available
[31] and the problem is combining all available information in order to minimize
the instrumentation error.

For the sake of simplicity, consider only two sensors, s1 and s2, providing read-
ings of the same quantity, e.g., the angular velocity ω, with different noise charac-
teristics, i.e., s1 = ω + n1 and s2 = ω + n2, where ‖n1‖ < ‖n2‖ at high frequency
while ‖n2‖ < ‖n1‖ at low frequency. Then a low-pass filter L(s) and its comple-
mentary high-pass filter H(s) = 1 − L(s) can be used to fuse information:

sfusion = s1H(s) + s2L(s) = ω + n2L(s) + n1(1 − L(s)), (16)

from two or more sensors (e.g., halteres, ocelli and compound eyes). The cut-off
frequency of the filter L(s) can be chosen so that the spectral content of n2L(s) +
n1(1 − L(s)) will be less than the spectral content of n1 or n2 [31].

The kinematic variable ω is dynamically unaffected by the filter. The estimated
variable (i.e., the output of the filter) is related to the input variable via a purely
algebraic relation in the time domain and no dynamics are involved in the noiseless
case. Such filters can be safely used in feedback loops to fuse readings of the same
kinematic variable from different sensors since no extra dynamics is added to the
overall system and stability (which involves noiseless conditions) is not affected.
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Complementary filters can be generalized to fuse information derived from sen-
sors when the sensed variables are related by differential equations, e.g., position
and speed. In these cases, the filter introduces some dynamics between the esti-
mated output and the sensed inputs.

The differential equations relating the sensed variables may be nonlinear, which
is typically the case when attitude is concerned. Theory of complementary and
Kalman filters have been traditionally used to design attitude filters. Although the
Kalman filters can be extended (EKF) to nonlinear cases, they fail in capturing the
nonlinear structure of the configuration space of problems involving, for example,
rotations of a rigid body and, most importantly, they can run into instabilities. On
the other hand, nonlinear filters [32], in particular complementary filters, can better
capture such a nonlinear structure.

4.1. Dynamic Attitude Estimation

As an example of use of complementary filters when different kinematic variables
are involved, consider the linear case of a rotational mechanical system with 1 d.o.f.
(θ ). As shown in Ref. [31], complementary filters such as the one represented in
Fig. 3 are traditionally used to fuse information available from both angular position
sensors and tachometers, respectively, θsens and ωtacho. Let θ∗ be the estimate of θ .
The filter gain k in Fig. 3 determines the transition frequency of the filter after
which the data from the tachometer (ωtacho) are weighted more, whereas before the
transition frequency data from the position sensors (θsens) are predominant on the
dynamic equation (the integrator 1/s). The optimal value for k is in fact determined
from the spectral characteristics of measurement noise [31].

Differently from the previous example, SO(3) is a nonlinear space and that is
where the advantages of a geometric approach can be fully appreciated. A part
from nonlinear dynamics, the very definition of estimation errors requires caution.
In the linear case, e = θ − θ∗ is a typical choice while quantities such as R − R∗
with R, R∗ ∈ SO(3) are no longer guaranteed to belong to SO(3). Following [17],
the estimation error will be defined as E = RTR∗.

A complementary filter on SO(3) was presented in Ref. [33] for dynamic atti-
tude estimation. The main definition, theorem and related lemmas are reported in

Figure 3. Linear complementary filter for a rotational mechanical system with 1 d.o.f.
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Figure 4. Complementary filter for dynamic attitude estimation.

Appendix A for convenience; the interested reader can refer to Ref. [33] for the
proof.

A block diagram of the filter, for the specific case of interest, is shown in Fig. 4.
Raw data from gyroscopes (ωgyr), from accelerometers (g) and from magnetome-
ters (b) (i.e., a total of nine channels) are fused together to provide an estimate
of the orientation (R∗). The filter also uses two initial readings g0 and b0, respec-
tively, from accelerometers and magnetometers. The orientation matrix R∗ can be
initially set to any appropriate value (e.g., the 3 × 3 identity matrix) in the integra-
tion block.

As a final note, in linear cases such as in Fig. 3 all the variables belong to the
same space R

n. In the nonlinear filter in Fig. 4, variables in different nodes of the
block diagram belong to very different spaces, some linear (so(3)) and some non-
linear (SO(3)). The adopted geometric approach leads us to recognize how sensor
fusion naturally occurs on the linear space of angular velocities, i.e., the Lie algebra
so(3).

4.2. Numerical Implementation

The filter in Fig. 4, in principle, can be directly implemented in simulation envi-
ronments such as Matlab/Simulink from MathWorks. Any digital implementation
of the filter would (i) transform the filter in a discrete-time one with time sequence
tn and (ii) necessarily introduce numerical errors. The main risk is that, as numeri-
cal errors accumulate, quantities such as R∗

n = R∗(tn) are likely to drift away from
SO(3), i.e., detR∗

n very different from 1 and/or R∗T
n R∗

n very different from the iden-
tity matrix I . This can be avoided by considering that data from analog sensors
are typically acquired via digital-to-analog converters with a fixed sampling time;
let this sampling time be �T . In the time interval tn � t < tn+1 = tn + �T , data



2124 D. Campolo et al. / Advanced Robotics 23 (2009) 2113–2138

from sensors can be assumed constantly equal to the last sampled value. This allows
computing R∗

n+1 via the Rodrigues formula [13] as:

ω∗
n = ωn + kg(gn × (R∗T

n g0)) + kb(bn × (R∗T
n b0))

αn = sin‖�T ω̂∗
n‖/‖�T ω̂∗

n‖ (17)
βn = (1 − cos‖�T ω̂∗

n‖)/‖�T ω̂∗
n‖2

R∗
n+1 = R∗

n(I + αn�T ω̂∗
n + βn�T 2ω̂∗2

n ),

which is guaranteed not to drift away from SO(3).

4.3. Experimental Tests of Attitude Estimation

In this section we present some experimental results relative to attitude estimation
based on the complimentary filter given by (17).

4.3.1. Experimental Setup
A circuit board equipped with a pair of IDG-300 dual-axis gyroscopes (InvenSense)
and one three-axis ADXL330 accelerometer (Analog Devices) was mounted on a
holder, and set free to rotate about the roll (x) and pitch (y) axis (Fig. 5). The holder
included two MAE-3 US-Digital angular sensors to measure the exact angular dis-
placement. The accelerometers are used to measure the static gravity acceleration,
while the gyroscopes provide the angular rate with respect to the three axes in the
body reference frame.

4.3.2. Results
According to the reference frame presented in Fig. 5 and adopting the yaw–pitch–
roll Euler angles (ZYX), the rotation matrix R ∈ SO(3) can be considered as a map
from the body-fixed frame to the space frame given by the sequential rotation about
the Zb, Yb and Xb axis:

R =
[

r11 r12 r13
r21 r22 r23
r31 r32 r33

]

= Rx(−φ)Ry(−θ)Rz(−ψ), (18)

φ, θ and ψ being the roll, pitch and yaw angles, respectively. Since this map is sur-
jective, with only the exception of the singularity in θ = π/2 for the pitch angle, one
can directly evaluate φ, θ and ψ , i.e., invert (18) and, thus, immediately compare
the true angular position measured by the position sensors mounted on the holder
with the estimated angles from the complimentary filter. Inverting (18) yields:

θ = − arcsin(r31)

φ = atan2

(

r32

cos(θ)
,

r33

cos(θ)

)

(19)

ψ = atan2

(

r21

cos(θ)
,

r11

cos(θ)

)

.
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Figure 5. Support used to perform the combined roll/pitch motion. The body-fixed coordinate system
is also shown.

The matrix RT(t)R∗(t) is guaranteed to converge to the identity matrix I for any
initial condition, i.e., the estimated orientation R∗(t) converges to the true orien-
tation R(t), the initial condition of the complementary filter. In the experiments
the initial orientation R∗(t0) was set to be different from the true R(t0) in order to
evaluate the speed of convergence. The results of attitude estimation from the com-
plementary filter are shown in Fig. 6, and the associated sensor readouts are shown
in Figs 7 and 8. The plots show rapid convergence of the estimated angles to the
true angles in the first 0.5 s of the experiments when the body frame is kept fixed
and then they remain very close to the true angles during the body motion. The
effectiveness of sensor fusion is best appreciated by removing either the gyros or
the accelerometers from the filter. In the first case, the removal of the gyros results
in an evident low-pass behavior of the estimated angles which exhibit a time lag as
compared to the true angles. Differently, if only gyros are used, the estimated angles
have a rapid response to body motion, but they show a drift that over time leads to
large offsets as compared to the true angles. The complementary filter, as explained
above, fuses the benefits from both sensor modalities, giving rise to a filter with a
very high bandwidth.
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Figure 6. Comparison between the actual roll angle (top) and pitch angle (bottom), and three different
estimations evaluated using only the accelerometers data, only the gyroscope data or both.

Figure 7. Accelerometer readouts. Readings are normalized with respect to gravity acceleration g.

5. Attitude Stabilization via the Separation Principle

In this section, results of traditional attitude control are first reviewed and then ap-
plied to derive a control law based on state feedback. Since in the application of
interest the state of the system is not known and only an estimation of the current
state can be used as feedback, it is natural to wonder whether dynamic output feed-
back control preserves the stability properties of the state feedback control, i.e.,
whether the separation principle holds. Maithripala et al. [34, 35] proved that the
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Figure 8. Gyroscopes readouts.

separation principle also holds in the general case of compact Lie groups and, there-
fore, also for SO(3). For the reader’s convenience this general result is restated in
terms of SO(3) in Appendix B. In this section, results from Refs [34, 35] are special-
ized to SO(3), the Lie groups of rigid-body rotations, and traditional state feedback
control is combined with the dynamic attitude observer presented in Ref. [33].

5.1. Attitude Control via State Feedback

Traditionally, control of (11) is performed via passivity-based arguments. Maithri-
pala et al. [34] show that the system (11) can be stabilized by a state feedback
torque τFB(R,ω) that consists of a conservative part, derived from a potential (also
referred to as ‘error’) Morse function U : SO(3) → R, and a dissipative (Rayleigh-
type) part (a function whose critical points are non-degenerate [16]):

τFB(R,ω) = −J (RT gradU + kωω̂)∨, (20)

where gradU is the gradient of the function U(R). Differently from the differential
dU , the gradient gradU depends on the geometry of the space itself. The gradient
is in fact defined by the following identities:

U̇ (R) = 〈dU,Rω̂〉
= 〈RT dU, ω̂〉
= 〈〈RT gradU, ω̂〉〉so(3), (21)

where, for a vector space V and its dual V ∗, 〈·, ·〉 :V ∗ ×V → R is the pairing opera-
tor and 〈〈·, ·〉〉V : V ×V → R is the inner product defined via a proper isomorphism
J : V → V ∗ as 〈〈a,b〉〉V = 〈Ja,b〉V , see Refs [33–35]. In mechanics, a natural iso-
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morphism J is provided by the inertia tensor (constant in body coordinates) and so
the gradient is determined by:

RT gradU = J−1RT dU. (22)

Therefore, the problem of stabilizing (11) is reduced to defining a potential func-
tion U(R) on SO(3) with a non-degenerate critical point in the desired configuration
R̄ ∈ SO(3). To this end, a commonly used potential function, first introduced by
Koditschek in Ref. [36], on SO(3) is:

U(R)
�= 1

2
trace(K(I − R̄TR)), (23)

where K is a symmetric 3 × 3 matrix with eigenvalues {k1, k2, k3}. Once the poten-
tial function U(R) is defined, the gradient (and, therefore, the feedback torque) can
be computed as in Ref. [37] via the time derivative of the error function:

U̇ (R) = 1

2
trace(K(−R̄TṘ))

= 1

2
trace(−KR̄TRω̂)

= 1

2
trace(skew(KR̄TR)Tω̂)

= 〈skew(KR̄TR), ω̂〉, (24)

where skew(A) = 1
2(A − AT). This allows computing RT gradU from (22):

RT gradU = J−1 skew(KR̄TR). (25)

Convergence properties of systems like (11) when the state feedback (20) is used
can be found in Refs [34, 35], here briefly restated for the case of interest. The
proof is based on La Salle’s principle [15] and involves a function V = U(R) +
1
2〈〈ω̂, ω̂〉〉so(3) as well as a set S ⊂ SO(3) × so(3) defined as S = {(R,ω) | V̇ = 0}.

The sign of V̇ is studied as follows:

V̇ = U̇ (R) + 1

2
ω̇TJω + 1

2
ωTJ ω̇

= U̇ (R) + ωTJ ω̇

= U̇ (R) + ωT(Jω × ω + τFB)

= U̇ (R) + ωTτFB

= U̇ (R) + 〈〈J−1τ̂FB, ω̂〉〉so(3), (26)

since ωT(Jω × ω) = 0 for all ω ∈ R
3.

Considering (22) and (20), then:

V̇ = 〈〈RT gradU, ω̂〉〉so(3) + 〈〈J−1τ̂FB, ω̂〉〉so(3)

= −kω‖ω‖2, (27)
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which implies S = {(R,ω) | ω = 0} and:

〈〈RT gradU, ω̂〉〉so(3) + 〈〈J−1τFB, ω̂〉〉so(3) � 0, (28)

where the inequality is strict for all (R,ω) /∈ S, implying asymptotic convergence.
This satisfies the Assumption 1 of Lemma 3 in Appendix B.

In order to perform attitude stabilization of the system (11) via state feed-
back (20), the current attitude R and angular velocity ω need to be available.

Angular velocity can be directly measured from gyroscopes (e.g., fusing signals
from halteres, ocelli and compound eyes), while attitude can be estimated from
mechanoreceptors and magnetic compass sensors, as shown next.

5.2. Dynamic Attitude Estimation Feedback

In this section, previous results on attitude control via state feedback and the dy-
namic attitude observer are coupled via the separation principle, restated in Appen-
dix B.

The full dynamic equations for the proposed attitude stabilization system are:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ṙ = Rω̂

ω̇ = J−1(τFB(R∗,ω∗) − ω × Jω)
attitude controller

Ṙ∗ = R∗ω̂∗
ω∗ = ωgyr + kb(b × b∗) + kg(g × g∗) dynamic observer

. (29)

The first two equations represent the system dynamics (11) with a feedback τFB
similar to (20) except that it is based on the estimates (R∗ and ω∗) of the current
orientation and angular velocity, instead of the actual values (R and ω). The last two
equations represent the dynamics of the observer (A.5) in Appendix A where, with-
out loss of generality, only the minimum number of independent fields (b and g) is
used.

Apart from proving almost-global asymptotic stability of the proposed observer,
Theorem 1 in Ref. [33] (reported in Appendix A) also provides an upper bound of
the attitude estimation error E, defined as:

E = RTR∗, (30)

based on the natural Lyapunov function [17] of the estimation error:

W(E) = 1

2
‖E‖2

SO(3) = 1

2
‖φE‖2, (31)

where φE is defined via the logarithmic map as ̂φE = logE.
One of the outcomes of Theorem 1 in Ref. [33] is the existence of real number

η > 0 such that, if the initial estimation error E(0) is such that traceE �= −1 (i.e.,
‖φE‖ < π, which is almost globally verified, see Remark 1 below), then a bound
for the Lyapunov function is

0 < W(E) < W(E(0))e−ηt ,
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for all t > 0. This translates, via the (31), into an upper bound for the attitude track-
ing error:

‖φE‖ < c‖φE(0)‖e−λt , (32)

where c = W(E(0))/‖φE(0)‖ and λ = η/2. This satisfies Assumption 2 of
Lemma 3 in Appendix B.

In order to apply the separation principle, rewrite (29) as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ṙ = Rω̂
ω̇ = J−1(τFB(R,ω) − ω × Jω) + ψ(R,ω,q)

Ṙ∗ = R∗ω̂∗
ω∗ = ωgyr + kb(b × b∗) + kg(g × g∗),

(33)

where ψ(R,ω,q) represents the term J−1(τFB(R∗,ω∗)− τFB(R,ω)). This is pos-
sible because ω∗ is a (linear) function of R, ω and R∗; R∗ can in turn be written as

RRTR∗ = RE and E is parameterized by q
�= φE .

Since φ(R,ω,q) is linear in ω and SO(3) is a compact Lie group, then Assump-
tion 3 of Lemma 3 in Appendix B is also automatically satisfied (see Ref. [35],
Assumption 3 for details). Recalling that also Assumptions 1 and 2 in Lemma 3
were satisfied (respectively, in (28) and (32)), then Lemma 3 guarantees that the
system (29) almost globally stabilizes the attitude at (R̄,0) ∈ SO(3) × so(3) and
that convergence is asymptotic.

Remark 1 (π-rotations). The chosen Lyapunov function (31) proves convergence
almost for all possible initial estimation errors E(0). A question arises: what can be
said about the initial configurations that are left out? Note first that, as clear from the
definition of the logarithmic map, any configuration can be reached via a rotation
about some axis by an angle less than or equal to π. The only configurations left out
by the chosen Lyapunov function are those such that trace(E) �= −1, i.e., such that
‖φE‖ = π. Such configurations correspond to the set of rotations about an arbitrary
axis by an angle exactly equal to π and will be referred to as π-rotations.

The presence of unstable equilibria is inherently related to π-rotations. As a sim-
ple example, for the needle of a magnetic compass, the north direction is a stable
equilibrium while the south direction (a π-rotation from the north) is an unstable
one. In practice, due to the presence of noise, unstable equilibria are not an issue.

5.3. Simulation Results

The housefly body is modeled as an ellipsoid with mass m = 10 mg and mo-
ment of inertia J = diag{Jx, Jy, Jz}, where Jx = 0.13 × 10−7 kg m2, Jy = 0.16 ×
10−7 kg m2 and Jz = 0.226 × 10−7 kg m2. Three independent sensors are consid-
ered for the attitude estimation: a three-axis gravitomer that measures the gravity
vector (normalized without loss of generality to g0 = [0 0 1]T with respect to a
right-handed space frame) components with respect to the body frame, a three-axis
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magnetometer that measures the geomagnetic field vector (normalized without loss
of generality to b0 = [1 0 0]T) and a three-axis gyroscope that measures the angu-
lar velocity vector. Readouts from the gravitometer, magnetometer and gyroscope
are simulated as follows:

ωgyro = ω(t) + w1(t)

gmeas(t) = P(s)RT(t)b0 + w2(t) (34)

bmeas(t) = RT(t − τd)g0 + w3(t),

where ω(t) and R(t) obey (29), and wi (t) ∈ R
3 are zero-mean independent ad-

ditive Gaussian noises with variance σ 2
1 = 0.6 and σ 2

2 = σ 2
3 = 0.2. With a little

abuse of notation we indicate with z(t) = P(s)y(t) the filtered version of the signal
y(t), where P(s) is the transfer function of a second-order low-pass filter which
models the dynamics of the accelerometers inside the gravitometer. The variable τd
(set to 30 ms in the simulation) represents a delay in the magnetic sensor outputs
that models possible HW/SW measurement signal processing time. In the simu-

lations we used P(s) = ω2
n

s2+2ξωns+ω2
n
, where ωn = 30 and ξ = 0.5. The control

torque τFB(R∗,ω∗) used in (33) was designed based on (20), where kω = 8 and
K = 30I ∈ R

3×3.
Some closed-loop simulations results are shown in Fig. 9. During the simulation

the body, starting from an orientation R(0) �= I , i.e., φ0 = θ0 = ψ0 = π/4, is driven

Figure 9. Actual Euler angles (dashed line) compared with their estimation (solid line) in a 4-s simu-
lation.
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Figure 10. Schematic design of the control algorithm implementation.

by the control torque to the desired position R(t) = I . A block diagram illustrating
the control algorithm is presented in Fig. 10. For the sake of simplicity the con-
tinuous time version is presented here; in fact, a discretization of this algorithm is
operated, using the Rodrigues formula (9) to guarantee R(t) and R∗(t) not to drif
from SO(3).

Since R∗(0) is chosen to be the identity matrix I , the estimation initially dif-
fer from the actual position; thus, a transient in the attitude estimation is observed.
Also, to simulate a linear acceleration of the body due for example to a transition
from hovering to cruise, a 0.5 g disturbance lasting 0.5 s is introduced along the
x-axis at time t1 = 2 s (see Fig. 11). As a result, the estimated orientation is mis-
calculated, i.e., the acceleration is interpreted as a pitch-down rotation, therefore
the controller produces a wrong pitch-up control input that creates a temporary dis-
placement from the equilibrium position. Nonetheless, as soon as the disturbance
disappears, the observer promptly settles on the correct value and the disturbance is
effectively compensated for by the control algorithm.

6. Conclusions

In this work we presented a geometric (i.e., intrinsic and coordinate-free) approach
to robust attitude estimation, derived from multiple and possibly redundant bioin-
spired navigation sensors, for attitude stabilization of a micromechanical flying
insect.

Such a multimodal sensor fusion was implemented by a dynamic observer, in
particular a complementary filter is proposed that is specialized to the nonlinear
structure of the Lie group of rigid-body rotations.

The numerical implementation was also provided in the specific case of inter-
est for inertial/magnetic navigation, i.e., when gravitometers, magnetometers and
gyroscopes are available.
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Figure 11. Data measured from the simulated accelerometers (left) and gyroscopes (right): a 0.5g

disturbance is introduced in the accelerometer-x from t1 = 2 s to t2 = 2.5 s.

The performance of the proposed filter was experimentally tested. In particular,
a 2-d.o.f. support was used to generate a known trajectory and compare it with the
estimated trajectory from the filter, showing good performance.

We then merged the proposed filter with state-feedback attitude control tech-
niques that were proven to provide a globally stable control system for body attitude
based on a generalized separation principle valid for Lie groups. Moreover, the pro-
posed controller does not depend on the specific choice of coordinates, thus leading
to easy and robust implementation on robotic flying insects.

As future work, theoretical performance properties of the proposed observer will
be analyzed in the presence of noisy data and disturbances (e.g., non-inertial accel-
erations, geomagnetic field distortion, etc.). The filter will be also tested in more
realistic conditions: miniaturized inertial/magnetic systems will be mounted on-
board of small flying vehicles as well as biomimetic swimming robots.
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Appendix

Appendix A. Complementary Filtering on SO(3)

Consider N � 2 homogenous and time-invariant vector fields �v1, �v2, . . . , �vN (e.g.,
the gravitational field, the geomagnetic field, the light direction, etc.) and assume
that at least two of them (e.g., �v1 and �v2, without loss of generality) are independent,
which can be expressed in any coordinate frame as:

�v1 × �v2 �= 0. (A.1)

Definition 1. Given a rigid body, define a body frame B on it. Let the rigid body
be at rest at some time t0 and define thus a space frame S0 as the one coincident
with the body frame B at time t0. Let the constant vectors vi0 = [vi0x vi0y vi0z]T

represent the components of each vector field at time t0 as measured by a set of sen-
sors on the rigid body. At any time t , let R(t) : R → SO(3) be a twice-differentiable
function representing the orientation of the rigid body in 3-D space with respect to
the space frame S0, let vi = [vix viy viz]T be the (time-variant) components of
each field and let ωgyr be readouts of the gyroscopes; both vi and ωgyr are referred
to the (body) moving frame.

Lemma 1. The trajectory R(t) ∈ SO(3), defined as in Definition 1, is reflected in
the measurements of the gyroscopes and of the vector fields sensors and can be
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expressed as:
{

ω̂gyr = RTṘ = ω̂
vi = RTv0i .

(A.2)

Lemma 2. Let R(t) : R → SO(3) represent, as in Definition 1, the trajectory on
SO(3) of a rigid body embedding a set of gyroscopes and let the angular velocity ω
of the rigid body be available, as in (A.2), via readings from such gyroscopes. Let
R∗TṘ∗ = ω̂ denote the dynamics of an estimator, then the tracking error:

E
�= RTR∗, (A.3)

is such that ‖E(t)‖SO(3) = constant. In particular, the following identity holds:

〈〈log(E),−ETω̂E + ω̂〉〉so(3) = 0. (A.4)

Theorem 1. Let R(t) : R → SO(3) represent the orientation of the rigid body as
in Definition 1. Let R∗(t) denote the estimate of R(t) and let it be defined by the
following observer:

⎧

⎨

⎩

Ṙ∗ = R∗ω̂∗
ω∗ = ωgyr + ∑N

i=1 ki(vi × v∗
i )

v∗
i = R∗Tv0i ,

(A.5)

where ki > 0 are the filter gains, and ωgyr and vi represent the sensor readings as
in (A.2).

The observer (A.5) asymptotically tracks R(t) for almost any initial condition
R∗(0) �= R(0) and in particular:

lim
t→∞RT(t)R∗(t) = I. (A.6)

Appendix B. Separation Principle on SO(3)

Here, the Lemma presented in Ref. [34] (Corollary 2) and proved in Ref. [35] for a
general Lie group G is restated for the specific case of interest G = SO(3).

Consider the system:
{

Ṙ = Rω
ω̇ = J−1(Jω × ω + τFB(R,ω)) + ψ(R,ω,q),

(B.1)

with (R, ω̂) ∈ SO(3) × so(3) and q ∈ R
n and V = U(R) + 1

2〈〈ω̂, ω̂〉〉so(3), where
U(R) is a smooth globally defined Morse function representing the potential energy
of the system. Also consider the following assumptions.

Assumption 1. The point (R̄,0) is an almost globally stable equilibrium point of
(B.1) with ψ ≡ 0 and furthermore:

〈〈RT gradU, ω̂〉〉so(3) + 〈〈J−1τ̂FB, ω̂〉〉so(3) � 0. (B.2)
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Condition (B.2) is satisfied by any simple mechanical system with potential
energy U(R) and Rayleigh-type dissipation. The equilibrium (R̄,0) is an almost
globally stable equilibrium if R̄ is a unique minimum of U(R).

Assumption 2. The function q(t) ∈ R
n satisfies:

‖q(t)‖ � c‖q(0)‖e−λt , (B.3)

for some c > 0, λ > 0 and all t > 0.

Assumption 3. The interconnection term satisfies ψ(R,ω,0) ≡ 0 and the linear
growth conditions:

‖ψ‖ � γ1(‖q‖)‖ω‖ + γ2(‖q‖), (B.4)

for two K∞ functions γ1(·) and γ2(·).
Lemma 3. If the Lie group G is compact and if Assumptions 1–3 are satisfied, then
the equilibrium (R̄,0) of the system (B.1) is almost-globally stable. Convergence is
asymptotic if the inequality in Assumption 1 is strict.
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