
  

  

Abstract—In this paper, we present a mathematical model of 
near-hover attitude dynamics and control in flapping flight.  
Then we apply this model to fruit fly (Drosophila) as an example. 
The attitude dynamics are derived from the complete 6-DOF 
equations of motion. Stability derivatives are estimated based on 
quasi-steady aerodynamic models of Flapping counter-torques 
(FCTs). Control derivatives are derived in a similar manner. 
Results show that stable angular motions can be achieved using 
a simple proportional feedback control. A coupled yaw and roll 
rotation (similar to a banked turn) is indentified as the most 
stable mode of angular motion. Additionally, free response 
results suggest that the fruit fly is able to damp out an initial 
disturbance of angular velocity.  

I. INTRODUCTION 
ecent studies on the stability of insect flight showed that 
both longitudinal [1-4] and lateral [5] dynamics are 

inherently unstable. For example, it has been shown that a 
particular coupling of pitching and forward motion causes the 
instability during both hovering [1] and forward flight [4]. 
Moreover, even with static control responses, no asymptotic 
longitudinal stability was found for tethered locust 
Schistocerca gregaria [3].  

More recent studies found that due to a passive mechanism 
known as flapping counter-torque (FCT), insect flight 
subjects to an inherent damping of angular velocity about roll, 
pitch [6] and yaw [7-9] axes of rotation. Remarkably, the 
damping is sufficient to decelerate the body yaw rotation at a 
rate observed in free flight maneuvers for different size scales 
of flapping wing flies [9].  

In this study, we first derived a stroke-averaged 6-DOF 
model for flapping-wing insects based on the flapping 
counter-torque [6, 7, 9] and flapping counter-force (FCF) 
models. Then we studied the near-hover attitude dynamics 
and control of a model insect (mimicking the morphology 
and wing kinematics of fruit fly Drosophila) assuming zero 
translational velocities. Closed-loop dynamics were obtained 
using three independent control inputs. In addition, under 
open loop conditions, we simulated the responses of the 
system due to different initial disturbances.  

II. INSECT FLIGHT MODELING 
Head, thorax and abdomen of the model insect are 

modeled as three rigid ellipsoids (Fig. 1) based on the 
morphological data of fruit fly Drosophila (Appendix C in 
[8]). We first consider the insect body oriented with a fixed 
pitch angle ߯଴  (free body angle) relative to a horizontal 
stroke plane (Fig. 1). The stroke plane frame is fixed to the 
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body with the origin located at the wing base. We define the 
body frame (ݔୠ, ݕୠ, ݖୠ) having the same orientation with the 
stroke plane frame, but with the origin located at the center of 
gravity. The distance between the wing base and the center of 
gravity is specified by ݈ଵ .The moment of inertia matrix 
relative to the body frame is calculated as:  
 

۷ୠ ൌ ቎
௫௫ܫ 0 െܫ௫௭
0 ௬௬ܫ 0

െܫ௭௫ 0 ௭௭ܫ

቏ ൌ ൥
0.3058 0 െ0.1913

0 0.5060 0
െ0.1913 0 0.3058

൩   

                                                                           ×10ିଵଶN m sଶ       (1) 
 

The wing kinematics are modeled with two degrees of 
freedom: a stroke angle Ԅሺݐሻ equals to ሺΦ/2ሻsin ሺ2π݊ݐሻ and 
a rotation angle ψሺݐሻ equals to ሺΨ/2ሻcos ሺ2π݊ݐሻ; where the 
stroke amplitude (Φ), maximum rotation angle (Ψ) and 
flapping frequency (n) are selected at 130º, 60º and 212 Hz, 
which are close to the measured values in free flying fruit flies 
[10]. The instant angle of attack α(t) is calculated by  
π/2 െ ψሺݐሻ . Note that stroke deviation is neglected for 
simplification purpose. 

III. EQUATIONS OF MOTION 

A. Linearized flight dynamics during hover 
The complete dynamics of a rigid body are described by the 

Newton-Euler equations [11], which comprise six equations 
with translational velocity (ݓ ,ݒ ,ݑ) and angular velocity (݌, 
 as unknowns. With the addition of another six kinematic (ݎ ,ݍ
equations describing the body position (x, y, z) and orientation 
 relative to the Earth-fixed frame, a complete system (߰ ,ߠ ,߶)
of equations includes twelve coupled nonlinear ordinary 
differential equations. The aerodynamic forces (X, Y, Z) and 
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Fig. 1.  A schematic view of the body coordinate frame (ݔୠ, ݕୠ, ݖୠ). The 
body frame is originated at the center of gravity (red dot), which is located 
below the wing base (blue dot). The distance between the center of gravity 
and the wing base is specified by ݈ଵ. The translational velocity components 
 are defined about the (ݎ ,ݍ ,݌) and angular velocity components (ݓ ,ݒ ,ݑ)
 .ୠ axes, respectivelyݖ ୠ, andݕ ,ୠݔ
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torques (L, M, N), acting along or around the body axes [3], 
are incorporated in these equations. To analyze the 
near-hover flight dynamics, we linearize the equations of 
motion using small perturbation theory. We first assume the 
reference flight condition of hovering: 

 
௘݌     ൌ ௘ݍ ൌ ௘ݎ ൌ ௘ݑ ൌ ௘ݒ ൌ ௘ݓ ൌ ௘ߠ ൌ ߶௘ ൌ 0,          (2) 

 
and the aerodynamic forces and torques are zero in the 
equilibrium state. Then we approximate the aerodynamic 
forces and torques as stroked-averaged analytical functions of 
the perturbed motion variables (i.e., stability derivatives 
multiplied by the corresponding disturbance quantity of the 
motion variables, for details refer to [3]). A complete 
description of this method can be found in [12]. Therefore, we 
have: 
 

ሶܠ                            ൌ ۯ ൅ ܠ ൅ ∆ሺܠሻ                          (3) 
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where ܠ ൌ ሺݑ, ,ݓ ,ݍ ,ߠ ,ݒ ,݌ ,ݎ ߶ሻ் א  ସ areܥ ଷ andܥ ,ଶܥ ,ଵܥ , ଼ܴ
constants of body moment of inertia: 
 

ଵܥ ൌ ூೣ೥

ூೣೣூ೥೥ିூೣ ೥
మ  

ଶܥ ൌ ூೣೣ

ூೣೣூ೥೥ିூೣ೥
మ  

ଷܥ ൌ ଵ
ூ೤೤

  

ସܥ ൌ ூ೥೥

ூೣೣூ೥೥ିூೣ೥
మ   .                                         (5) 

 
Because body position (ݔ  and head angle ߰ do not (ݖ ,ݕ ,
affect the aerodynamic steady state, they can be considered 
separately with appropriated equations [12]. In Eqn. 4, ܺ௨, ௩ܻ, 
ܼ௪ ௣ܮ , ௤ܯ , , ௥ܰ ௩ܮ ,  and ܯ௨  are the only non-zero stability 
derivatives due to the simplifications made in the current 
study. ∆ሺܠሻ  represents the modeling uncertainties which 
include the errors from averaging, linearization process and 
approximation of aerodynamic forces and torques. 

B. Attitude dynamics with wing asymmetries 
The attitude dynamics are reduced from the complete 

6-DOF flight dynamics described by Eqn. 4. In general, the 
attitude dynamics are coupled with the translational velocities 
(as shown in Eqn. 4). In the current study, we assume the 
flight dynamics are limited to the 3-DOF angular motions; 
therefore there is no effect of translational velocity on 
aerodynamic moments. This can be illustrated by considering 

the model insect tethered at its center of gravity by a universal 
joint fixed to the Earth, eliminating any translational 
component of velocity.  

Observed from free-flying insects [10, 13, 14],  we choose 
the following wing asymmetries as the control variables to 
stabilize the attitude: 1) ΔΦ: differential change of stroke 
amplitudes for left and right wings (Fig. 2A), which is 
designed to modulate roll torque L; 2) equal change of mean 
stroke angle Φഥ  for left and right wings (Fig. 2B), which is 
designed to modulate pitch torque M; 3) ΔΘ : differential 
change of stroke plane tilt angles for left and right wings (Fig. 
2C), which is designed to modulate yaw torque N. The partial 
derivatives of aerodynamic torques (L, M, N) with respect to 
the control variables are known as control derivatives, the 
estimations of which are described in Section IV.  

Now, we write the attitude dynamics incorporating the 
control inputs as: 

 
ሶܠ ୟ ൌ ୟܠୟۯ ൅ ۰ୟ(6)                               ܋ 
 

where ܠୟ ൌ ሾ݌ ݍ ݎ ߶ ߠ ߰ሿT א ܴ଺ is state vector and 
܋ ൌ ሾΔΦ ΔΘ ΦഥሿT is control vector; ۯୟ is system matrix: 
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ۑ
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ۑ
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                 (7) 

 
and ۰ୟ is control system matrix: 
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ۏ
ێ
ێ
ێ
ێ
ΔΦܮ4ܥۍ

0
ΔΦܮ1ܥ

0
0
0

1ܰΔΘܥ
0
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0
0
0

0
Φഥܯ3ܥ

0
0
0
0 ے

ۑ
ۑ
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ۑ
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.                    (8) 

 

IV. STABILITY AND CONTROL DERIVATIVES  

A. Estimation of stability derivatives 
The stability derivatives can be estimated based on FCT and 

FCF models (refer to Appendix A), which describe the 
aerodynamic counter-torques/forces generated by a wing pair 
during rotations/translations about roll, pitch  and yaw axes. 
Based on quasi-steady aerodynamic models, analytical 
estimations are developed.  

Table 1 summarizes the non-zero stability derivatives 
associated with flight dynamics during hover. Note  ܮ௩ (ܯ௨) 
equals ௩ܻ (ܺ௨) times the distance between the wing base and 
the center of gravity ݈ଵ . Other stability derivatives are 
expected to be zero (e.g., ܺ௩, ௣ܰ) since FCTs and FCFs act 
collinear with the rotating/translating axes. It is important that 
we assumed the near-hover condition, which leaves the lift 
and drag coefficients dependent on only the angle of attack 
(eliminating the effect of translational velocity on the 
aerodynamics). Now, the stability derivatives are ready to be  
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calculated with proper morphological and wing kinematic 
data. 
 
Table 1. Analytical estimations of stability derivatives with 

non-zero values. 
Stability 

Derivatives  Analytical estimations 

ܺ௨ ௥݂௢௟௟തതതതത
ݑ  െܴߩଶܿҧ̂ݎଵ

ଵሺܵሻΦ݊ܥ஽ሺα଴ሻcosଶሺ߶ሻ ቤ
݀߶෠
ݐ̂݀

ቤ
തതതതതതതതതതതതതതതതതതതതതതതതതത
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݀߶෠
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ቤ
തതതതതതതതതതതതതതതതതതതതതതതതത

 

ܼ௪ ௬݂௔௪തതതതതത
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ߙ݀ |ఈୀఈబ

ฬ
݀߶
ݐ݀ ฬ
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 ௣ܮ
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dߙ |ఈబ
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 ௤ܯ
߬௣ప௧௖௛തതതതതതത
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2 ଶݎସܿҧܴ̂ߩ

ଶሺܵሻ̂ݎ௖௣
dܥ௅ሺߙሻ

dߙ |ఈబ

sınଶሺ߶ሻ ቤ
݀߶෠
ݐ̂݀

ቤ
തതതതതതതതതതതതതതതതതതതതതതതതതതതതത
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௥ܰ 
߬௬௔௪തതതതതത

ݎ  െܴߩସܿҧ̂ݎଶ
ଶሺܵሻ̂ݎ௖௣Φܥ஽ሺݐሻ ቤ

݀߶෠
ݐ̂݀
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ݒ ݈ଵ െܴߩଶܿҧ̂ݎଵ
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݀߶෠
ݐ̂݀
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തതതതതതതതതതതതതതതതതതതതതതതതത

݈ଵ 

௨ ௥݂௢௟௟തതതതതܯ
ݑ ݈ଵ െܴߩଶܿҧ̂ݎଵ

ଵሺܵሻΦ݊ܥ஽ሺα଴ሻcosଶሺ߶ሻ ቤ
݀߶෠
ݐ̂݀
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݈ଵ 

௥݂௢௟௟തതതതത ,  ௣݂ప௧௖௛തതതതതതത  and ௬݂௔௪തതതതതത  denote the FCFs during translations along each 
principal axis in the body frame; ߬௥௢௟௟തതതതതത ,  ߬௣ప௧௖௛തതതതതതത  and ߬௬௔௪തതതതതത  denote the FCTs 
during rotations about each principal axis in the body frame. ܥ௅ሺߙሻ and 
 ሻ are the lift and drag force coefficients as functions of the angle ofߙ஽ሺܥ
attack ߙ ,[15] ߙ଴ is the geometric angle of attack, ߩ is the fluid/air density, ܴ 
is the wing length, ܿҧ is the mean chord length, ቀௗథ෡

ௗ௧መ
ቁ is the normalized wing 

angular velocity, Φ and ݊ are the wing flapping amplitude and frequency, 
௖௣ݎ̂ ,ଶሺܵሻ is the dimensionless second moment of wing areaݎ̂  is the 
dimensionless center of pressure, ߶ is the stroke angle and ߮ is the wing 
rotation angle. 
 

B. Estimation of Control Derivatives 
Using quasi-steady aerodynamic models [15, 16], in 

Appendix B, we derive the mathematical estimations of 
control derivatives, summarized in Table 2. Note that, all the 
control and stability derivatives are calculated on 
stroke-by-stroke basis. Remarkably, each wing asymmetry 
only generates an aerodynamic torque about an individual 
principal axis, indicating a decoupled control of roll, pitch 
and yaw moments by ΔΦ, Φഥ  and ΔΘ. 
   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Analytical estimations of control derivatives with 
non-zero values. 

Control derivatives Analytical estimations 

ΔΦ 1ܮ
2 ଶݎସܿҧ݊ଶܴ̂ߩ

ଶሺܵሻ̂ݎ௖௣Φܥ௅ሺߙሻ ቆ
݀߶෠
ݐ̂݀

ቇ
ଶ

cosሺ߶ሻ
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Φഥܯ  1
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ଶሺܵሻ̂ݎ௖௣Φଶܥ௅ሺߙሻ ቆ
݀߶෠
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C. Estimation errors  
The estimations of both stability and control derivatives 

may subject to errors from the neglected aerodynamic effects 
(e.g., rotational lift, wake capture and added mass [17]). 
Experimental results [6] showed that, predictions of roll and 
yaw FCT models match closely to the measured values, while 
pitch FCT model tends to underestimate the measured values. 
Therefore, we expect stability derivative ܯ௤ lower than the 
actual value. On the other hand, experimental results for FCFs 
as well as control derivatives are still lacking, which need to 
be studied systematically in the future.  Readers can refer to 
[5, 18] for related studies. 

V. CLOSED LOOP ATTITUDE DYNAMICS 

A. Active Stabilization 
Due to the inherent flight instability, to achieve stable 

attitude dynamics, an active control is required to regulate the 
angular positions. Therefore, based on the estimated mapping 
from control variables (ΔΦ, Φഥ , ΔΘ) to aerodynamic moments 
(L, M, N) (Table 2), we choose the following control 
algorithm, which is similar to a Proportional-Derivative (PD) 
control :   

 

            ൥
ΔΦ
ΔΘ
Φഥ

൩ ൌ ൥
݇ଵ 0 0 ݇ଶ 0 0
0 0 ݇ହ 0 0 ݇଺
0 ݇ଷ 0 0 ݇ସ 0

൩ ୟܠ ൌ  ୟ,             (9)ܠ۹

 
where ݇ଵ, ݇ଶ, ݇ଷ, ݇ସ, ݇ହ and ݇଺ are design parameters, which 
are properly chosen to yield desired stability. 

B. Closed Loop Attitude Dynamics  
The closed loop attitude dynamics are now ready to be 

investigated by incorporating Eqn. 9 into Eqn. 6 and then 
substituting the stability and control derivatives with the 
corresponding estimations. Collectively, we have: 

 
Fig. 2 Control variables from wing asymmetries. 
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ሶܠ ୟ ൌ ୟۯ

ୡ  ୟ                                             (10)ܠ
 
where ۯୟ

ୡ  is the closed loop system matrix incorporating the 
control input ۰ୟ܋ in Eqn. 6:  
 
 
 
 
 
 
 
 
 
 
The stability and control derivatives in the matrix are 
estimated based on analytical estimations presented in Table 
1 and 2); ܥଵ, ܥଶ, ܥଷ and ܥସ are calculated based on Eqn. 5.  

Next, by applying fruit fly Drosophila morphological data 
[8] and using the wing kinematics described in Section II, we 
calculate the stability and control derivatives, which are 
summarized in Table 3 and 4. 
 

Table 3.  Stability derivatives 
Stability Derivatives ܮ௣ ܯ௤ ௥ܰ 
Values (10ିଵଶ N m s) െ7.55 െ3.77 െ26.55 
 

Table 4.  Control derivatives 
Control Derivatives ܮ୼஍ ܯ஍ഥ  ୼ܰ஀ 
Values (10ି଼ N m) 1.22 1.63 1.63 

 
Now we have obtained the system matrix ۯୟ

ୡ , we then 
calculate its eigenvalues and corresponding eigenvectors by 
assuming proper values of design parameters (݇ଵ, ݇ଶ, ݇ଷ, ݇ସ, 
݇ହ and ݇଺). 

It can be seen from Eqn. 9, that ݇ଵ, ݇ଷ and ݇ହ  define the 
magnitudes of feedback from the angular velocity 
components ( ݌ ݍ , ݎ , ), and ݇ଶ , ݇ସ  and ݇଺  define the 
magnitudes of feedback from angular position components 
 As indicated by [6, 7, 9], flapping-wing flight already .(߰,ߠ,߶)
subjects to a substantial aerodynamic damping of angular 
velocities; therefore, we can reduce the PD control to P 
control by choosing ݇ଵ= ݇ଷ= ݇ହ  = 0. In the following, we 
calculate the system matrix ۯୟ

ୡ  using different values of ݇ଶ, ݇ସ 
and ݇଺.  

It is easy to see that by choosing negative values of ݇ଶ, ݇ସ 
and ݇଺, the stability of the closed-loop system can be ensured, 
therefore a P control is sufficient to achieve a stable attitude 
dynamics. For example, choosing ݇ଵ= ݇ଷ= ݇ହ = -10-4 results 
in an asymptotic stable system of six stable modes with 
different convergence rates (Table 5). Mode 1, which 
associates with an in-phase coupling of roll and yaw 
velocities (similar to a banked turn), is the most stable mode. 
This might explain why in the nature, insects and birds tend to 
use banked turns [14] during fast maneuvers. On the other 
hand, Modes 3, 4 and 6, in which roll, yaw and pitch angles 
are the dominant variables, have the least stability (slower 

convergence rates). Therefore, we increase the values of ݇ଶ, 
݇ସ  and ݇଺  to enhance the feedback from angular position. 
Results show that when ݇଺ is sufficiently large, Modes 5 and 6 
(associated with pitch motions) reduced to an oscillatory 
mode but remains stable. While we further increase the values  

 
 
 
 
 
 
 
 
 

of ݇ଶ and ݇ସ, Modes 2 and 4, and Modes 1 and 3 also reduce 
to two separate oscillatory stable modes (e.g., Table 6), and 
the system consists of three oscillatory stable modes.  
  
Table 5. Eigenvalues and eigenvectors of the system matrix 

݇ଵ = ݇ଷ = ݇ହ = 0, ݇ଶ = ݇ସ = ݇଺ = െ10െ4 

Mode 1 2 3 4 5 6 
λ௜ -161.31 -21.67 -0.16 -0.06 -7.00 -0.46 

 0 0 0 *0.16 *0.98- *0.59 ݌ߜ

*0.99- 0 0 0 0 ݍߜ -0.42*

 0 0 *0.06 0 *0.20 *0.80 ݎߜ

 0 0 0 *0.99- 0.05 0 ߶ߜ

 *0.91 *0.14 0 0 0 0 ߠߜ

 0 0 *1.00- 0 0.01- 0.01- ߰ߜ
* dominant variables.  
 
Table 6. Eigenvalues and eigenvectors of the system matrix 

݇ଵ = ݇ଷ = ݇ହ = 0, ݇ଶ = ݇ସ = ݇଺ = െ1 

Mode 1 2 3 

λ௜  -14.05 േ 167.17i -77.56 േ 343.69i -3.73 േ 179.44i 

 േ 0.07i* 0 0.66- *0.83 ݌ߜ

 *1.0000 0 0 ݍߜ

 േ 0.12i* -0.74* 0 0.54- ݎߜ

 0 0 0 ߶ߜ

 0.01i ט 0.00- 0 0 ߠߜ

 0 0 0 ߰ߜ

* dominant variables. 

 

VI. SIMULATION OF PASSIVE BODY ROTATION 
In a previous study [8], the stability of open-loop attitude 

dynamics was investigated by looking at the system matrix 
 ୟ. The results were inclusive because three zero eginvaluesۯ
were found for the linearized system. However, the open-loop 
attitdue dynamics are considered to be unstble because  
passive damping is at most only able to damp out the angular 

ୟۯ           
ୡ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
௣ܮସ൫ܥۍ ൅ ݇ଵܮ୼஍൯ 0 ଵሺܥ ௥ܰ ൅ ݇ହ ୼ܰ஀ሻ ୼஍ܮସ݇ଶܥ 0 ଵ݇଺ܥ ୼ܰ஀

0 ௤ܯଷ൫ܥ ൅ ݇ଷܯ஍ഥ ൯ 0 0 ݇ସܥଷܯ஍ഥ 0
௣ܮଵሺܥ ൅ ݇ଵܮ୼஍ሻ 0 ଶሺܥ ௥ܰ ൅ ݇ହ ୼ܰ஀ሻ ୼஍ܮଵ݇ଶܥ 0 ଶ݇଺ܥ ୼ܰ஀

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

                     (11)
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velocities, but cannot tune the insect back to the original 
orientation.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
To see whether the system is able to damp out arbitrary 

initial disturbances of angualr velocity, we simulate the 
attitude dynamics in Matlab enviroment (For details of 
simulation, refer to [8, 19, 20]). We further assume the 
dynamics are confined to the 3-DOF angular motions, 
exculding the aerodynamic effects of translational velocities. 
The results are summarized in Fig. 3. 

 It can be seen that initial angular velocities of different 
types are all damped out in the succeeding motions. And 
unsprisingly, the damping is strongest about yaw axis.  

VII. CONCLUSIONS  
In this paper, we presented a mathematical model of 

attitude dynamics and control in insect flight, and used fruit 
fly (Drosophila) as an example. The current model can as 
well be applied to other flapping-wing insects with specific 
morphological and wing kinematic data. The results showed 
that by modulating the magnitude of feedback, different 
stable flight modes can be achieved. The related future work 
might include more comprehensive studies on the 6-DOF 
flight dynamics as well as robotic wing experiments  to verify 
the mathematical estimations of both stability and control 
derivatives.  

APPENDIX 
Based on quasi-steady aerodynamic models [15, 16], we 

analytically estimate the aerodynamic torques caused by body 
motions as well as three types of wing asymmetry. For 
discussion of estimation errors, readers can refer to Section 
IV, part C. 

A. Flapping counter-torques (FCTs) and Flapping 
counter-forces (FCFs) based on quasi-steady aerodynamic 
models 
Body rotations about the principal axes in the stroke plane 

frame cause effective wing asymmetries which result in 
aerodynamic counter torques (FCTs), which can be 
summarized by the following equations (Readers can refer to 
[6] for detailed derivations and experimental validations):   

 

߬௥௢௟௟തതതതതത ൎ െ ଵ
ଶ

ଶݎସܿҧܴ̂ߩ
ଶሺܵሻ̂ݎ௖௣

ୢ஼ಽሺఈሻ
ୢఈ |ఈబ

cosଶሺ߶ሻ ቚௗథ෡

ௗ௧መ
ቚ

തതതതതതതതതതതതതതതതതതതതതതതതതതത
Φ݊݌,  
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ଶ
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ଶሺܵሻ̂ݎ௖௣
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ୢఈ |ఈబ

sınଶሺ߶ሻ ቚௗథ෡

ௗ௧መ
ቚ

തതതതതതതതതതതതതതതതതതതതതതതതതത
Φ݊ݍ,  

 ߬௬௔௪തതതതതത ൌ െܴߩସܿҧ̂ݎଶ
ଶሺܵሻ̂ݎ௖௣Φܥ஽ሺݐሻ ቚௗథ෡

ௗ௧መ
ቚ

തതതതതതതതതതതതത
 (A1)                                     .ݎ݊

 
 Stroke-averaged FCTs act collinear with the axes of 
rotation and are linearly dependent on the flapping frequency 
and angular velocity. Similarly, one can show that the body 
translations also cause effective wing asymmetries that result 
in damping forces (FCFs). The FCFs during body translations 
along body roll (forward/backward), pitch (lateral) and yaw 
(vertical) axes are calculated:  
  

௥݂௢௟௟തതതതതത ൌ െܴߩଶܿҧ̂ݎଵ
ଵሺܵሻΦ݊ܥ஽ሺα଴ሻcosଶሺ߶ሻ ቚௗథ෡

ௗ௧መ
ቚ

തതതതതതതതതതതതതതതതതതതതതതതതത
 , ݑ

௣݂ప௧௖௛തതതതതതത ൌ െܴߩଶܿҧ̂ݎଵ
ଵሺܵሻΦ݊ܥ஽ሺα଴ሻsınଶሺ߶ሻ ቚௗథ෡

ௗ௧መ
ቚ

തതതതതതതതതതതതതതതതതതതതതതതത
  ,ݒ

௬݂௔௪തതതതതത ൌ െ ଵ
ଶ

ଵݎଶܿҧܴ̂ߩ
ଵሺܵሻΦ݊ ௗ஼ಽ ሺఈሻ

ௗఈ |ఈୀఈబ
ቚௗథ

ௗ௧
ቚതതതതതതതതതതതതതതതതതതതത  (A2)                         ,ݓ

 
respectively.  
 

B. Aerodynamic torque due to wing asymmetries 
1) Stroke angle difference: 

The lift difference between the left and right wings caused 
by a stroke angle difference ΔΦ will produce a resultant roll 
moment over a wing stroke (no resultant pitch and yaw 
moment). The instantaneous magnitude of the lift force 
produced by a single wing is: 
 
|Lܨ| ൌ ଵ

଼
ଶݎଷܿҧܴ̂ߩ

ଶሺܵሻ ቀௗథ෡

ௗ௧መ
ቁ

ଶ
 ሻΦଶ݊ଶ,                                        (B1)ߙ௅ሺܥ

 
therefore, the induced roll torque is: 
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2) Mean stroke angle:  

A variation of mean stroke angle Φഥ  (for both left and right 
wings) will change the instantaneous moment of arm, and 
result in a pitch moment over one wing stroke (no resultant 
roll and yaw moment): 

 

ܯ ൎ ௖௣ݎLതതതܴ̂ܨ2 sinΦഥ ൎ
1
4 ଶݎସܿҧ݊ଶܴ̂ߩ
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ସ
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ΦଶΦഥ .                                                (B3) 

 
3) Tilt angle of the stroke plane 

A backward tilted left wing stroke plane together with a 
forward tilted right wing stroke plane will produce a resultant 
yaw moment over one wing stroke (no resultant roll and pitch 
moment), which is: 
 

 
Fig. 3 Simulation results of passive body rotation. Responses to the initial 
disturbances of angular velocity about A) Roll, B) Pitch, C) Yaw axes, 
respectively. D) Response to an arbitrary initial disturbance .
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