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1. Lagrangian and Eulerian Perspectives 
 
There are two common ways to study a moving fluid: 
 

1. Look at a particular location and observe how all the fluid passing that location behaves.  This is 
called the Eulerian point of view. 

2. Look at a particular piece of fluid and observe how it behaves as it moves from location to location.  
This is called the Lagrangian point of view. 

 
Example: 
 
Let’s say we want to study migrating birds.  We could either: 

1. stand in a fixed spot and make measurements 
as birds fly by (Eulerian point of view), or 

 
 
 
 
 

2. tag some of the birds and make measurements  
as they fly along (Lagrangian point of view). 

 
 

Lagrangian (aka Material, Particle, Substantial) Derivative 
(Go to https://engineering.purdue.edu/~wassgren/teaching for an interactive Java applet on this topic.) 
 
If we follow a piece of fluid (Lagrangian viewpoint), how will some property of that particular piece of 
fluid change with respect to time? 
 
 
 
 
 
 
 
Let’s say we’re interested in looking at the time rate of change of temperature, T, that the particle observes 
as it moves from location to location.  The particle may experience a temperature change because the 
temperature of the entire field of fluid may be changing with respect to time (i.e., the temperature field may 
be unsteady).  In addition, the temperature field may have spatial gradients (different temperatures at 
different locations, i.e., non-uniform) so that as the particle moves from point to point it will experience a 
change in temperature.  Thus, there are two effects that can cause a time rate of change of temperature that 
the particle experiences:  unsteady effects, also known as local or Eulerian effects, and spatial gradient 
effects, also known as convective effects.  We can describe this in mathematical terms by writing the 
temperature of the entire field as a function of time, t, and location, x, 

( ),T T t= x  (1) 
Note that the location of the fluid particle is a function of time:  x=x(t) so that, 

( )( ),T T t t= x  (2) 

Taking the time derivative of the temperature, expanding the location vector into its x, y, and z components, 
and using the chain rule gives, 

   

dT
dt following a

fluid particle

= ∂T
∂t

+ ∂T
∂x

dx
dt
=ux

!
+ ∂T
∂y

dy
dt
=uy

!
+ ∂T
∂z

dz
dt
=uz

!
 (3) 

Note that dx/dt, dy/dt, and dz/dt are the particle velocities ux, uy, and uz respectively.  Writing this in a more 
compact form, 
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2. Reynolds’ Transport Theorem (RTT) 
 
Recall that we can look at the behavior of small pieces of fluid in two ways:  the Eulerian perspective or the 
Lagrangian perspective.  Often we’re interested in the behavior of an entire system of fluid (many pieces of 
fluid) rather than just an individual piece.  How do we analyze this situation?  We can use Eulerian and 
Lagrangian approaches for analyzing a macroscopic amount of fluid but we need to first develop an 
important tool called the Reynolds Transport Theorem.   
 
Why do we want to do this?  It turns out that the behavior of fluids (most substances in fact) can be 
described in terms of a few fundamental laws.  These laws include: 

− conservation of mass (COM), 
− Newton’s 2nd Law, 
− the angular momentum principle, 
− conservation of energy (COE, aka the First Law of Thermodynamics), and 
− the second law of thermodynamics. 

 
These laws are typically easiest to apply to a particular system of fluid particles (Lagrangian perspective).  
However, the Lagrangian forms of the laws are typically difficult to use in practical applications since we 
can’t easily keep track of many individual bits of fluid.  It’s much easier to apply the laws to a particular 
volume in space instead (referred to as a control volume, an Eulerian perspective).  For example, tracking 
the behavior of individual bits of gas flowing through a rocket nozzle would be difficult.  It’s much easier 
to just look at the behavior of the gas flowing into, out of, and within the volume enclosed by the rocket 
nozzle.  The Reynolds Transport Theorem is a tool that will allow us to convert from a system point of 
view (Lagrangian) to a control volume point of view (Eulerian). 
 
Let’s consider a system of fluid particles that is coincident (occupying the same region in space) as our 
control volume (CV) at some time, t: 
 
 
 
 
 
 
 
 
 
 
 
At some later time, t+δt, the system may have moved relative to the CV. 
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Let B be some transportable property (i.e., some property that can be transported from one location to 
another, e.g., mass, momentum, energy) and β be the corresponding amount of B per unit mass, i.e.: 
 

sys

sys

CV
CV

V

B dV

B dV

βρ

βρ

=

=

∫

∫
 (11) 

where Bsys and BCV refer to the total amount of B in 
the system and control volume, respectively. 

 
 
 
Note that at time, t, the total amounts of B in the system and control volume are equal since the system and 
CV are coincident, 

( ) ( )sys CVB t B t=   (12) 

 
However, at time, t+δt, the system and CV no longer occupy the same region in space so that, in general, 
Bsys(t+δt) ≠ BCV(t+δt). 
 
 

Note that B may be changing with time so that, 
in general, Bsys(t+δt) ≠ Bsys(t). 
 
In the figure at the left, Bout is the amount of B 
that has left the CV and Bin is the amount of B 
that has entered the CV. 

 
 
 
 
Utilizing the figure shown above, we see that, 

( ) ( ) ( ) ( )CV sys out inB t t B t t B t t B t tδ δ δ δ+ = + − + + +  (13) 

Subtracting Bsys(t) from both sides and dividing through by δt gives, 
( ) ( ) ( ) ( ) ( ) ( )CV sys sys sys out inB t t B t B t t B t B t t B t t

t t t t
δ δ δ δ
δ δ δ δ

+ − + − + +
= − +  (14) 

Now let’s substitute BCV(t) = Bsys(t) on the left hand side, subtract Bout(t)/δt and Bin(t)/δt on the right-hand 
side (note that Bout(t)=Bin(t)=0), and then take the limit of the entire equation as δt→0, 
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 (15) 
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Note that the D/Dt notation has been used to signify that the first term on the right hand side of Eq. (15) 
represents the time rate of change as we follow a particular system of fluid (Lagrangian perspective). 
Re-arranging the equation and substituting in for BCV and Bsys using Eq. (11), 

( )
sys

out in

CVV

d B BD ddV dV
Dt dt dt

βρ βρ
⎡ ⎤ ⎡ ⎤ −⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∫ ∫  (16) 

 
The last term on the right hand side of Eq. (16) represents the net rate at which B is leaving the control 
volume through the control surface (CS).  Let’s examine this term more closely by zooming in on a small 
piece of the control surface and observing how much B leaves through this surface in time δt. 
 

The component of the fluid velocity out of the 
control volume through surface, dA, is given by, 
 rel ˆ⋅u n  
where urel=usys-uCS is the velocity of the fluid 
relative to the control surface.  The volume of fluid 
leaving through surface dA in time δt is then, 
 ( ) ( )rel relˆdV tdA d tδ δ= ⋅ = ⋅u n u A  
Thus, the volumetric flowrate, dQ, (volume per 
unit time) through surface dA is given by, 
 reldQ d= ⋅u A  (17) 
 

Now use Eq. (17) to write the net rate at which B leaves the control volume, 
( ) ( )out in

rel
CS CS

d B B
dQ d

dt
βρ β ρ

−
= = ⋅∫ ∫ u A  (18) 

 
Combining Eq. (18) with Eq. (16) gives, 
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! "## $##
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dt
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⎢

⎤
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⎥
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rate of increase of
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+ β ρurel ⋅dA( )
CS
∫

net rate at which B  leaves 
the CV through the CS

! "## $##

 (19) 

The Reynolds Transport Theorem! 
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