

Pipe Flows - Pipe Systems

$$
\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{\text {out }}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{\text {in }}-H_{L}+H_{S}
$$

where

$$
\alpha=\left\{\begin{array}{cc}
2 & R e_{D}<2300 \text { (laminar) } \\
1 & R e_{D}>2300 \text { (turbulent) }
\end{array}\right.
$$

$$
H_{S}=\frac{\dot{W}_{S, \text { on } C V}}{\dot{m} g} \quad H_{L}=\sum_{\forall \text { losses }} k_{i} \frac{\bar{V}_{i}^{2}}{2 g}
$$

$$
k \equiv \frac{\Delta p}{\frac{1}{2} \rho \bar{u}^{2}} \quad k_{\text {major }}=f_{D}\left(\frac{L}{D}\right) \quad k_{\text {minor }}: \text { Look up values from tables. }
$$

$$
f_{D, \text { laminar }}=\frac{64}{R e_{D}} \quad f_{D, \text { turbulent }}=f\left(R e_{D}, \frac{\epsilon}{D}\right) \quad \text { (Use the Moody plot or Haaland or Colebrook formulas.) }
$$

Pipe Flows - Pipe Systems

Average Roughness of Commercial Pipes

Material (new)	ft	mm
Riveted steel	$0.003-0.03$	$0.9-9.0$
Concrete	$0.001-0.01$	$0.3-3.0$
Wood stave	$0.0006-0.003$	$0.18-0.9$
Cast iron	0.00085	0.26
Galvanized iron	0.0005	0.15
Asphalted cast iron	0.0004	0.12
Commercial steel or wrought iron	0.00015	0.045
Drawn tubing	0.000005	0.0015
Plastic, glass	0.0 (smooth)	0.0 (smooth)

Table of Minor Loss Coefficients
Component
K
Component
K
a. Elbows

Regular 90°, flanged	0.3
Regular 90°, threaded	1.5
Long radius 90°, flanged	0.2
Long radius 90°, threaded	0.7
Long radius 45°, flanged	0.2
Regular 45°, threaded	0.4

b. $\quad 180^{\circ}$ return bends
180° return bends, flanged 0.2
180° return bends, threaded $\quad 1.5$
c. Tees

Line flow, flanged 0.2
Line flow, threaded 0.9
Branch flow, flanged $\quad 1.0$
Branch flow, threaded 2.0
d. Union, threaded 0.06
h. Sudden Contraction/Expansion:

Fig. 8.15 Loss coefficients for flow through sudden area changes. (Data from [1].)

Pipe Flows - Pipe Systems

Types of Pipe Systems

Type I: The desired flow rate is specified and the required pressure drop must be determined. (Easiest to solve)

Type II: The desired pressure drop is specified and the required flow rate must be determined. (Often requires iteration since the Reynolds number is not known.)

Type III: The desired flow rate and pressure drop are specified and the required pipe diameter must be determined. (Often requires iteration since the Reynolds number and relative roughness are not known.)

Serial Pipe Systems

Parallel Pipe Systems

