

Trans-Alaska Pipeline: 800 miles (1290 km), 48 in . (1.2 m) diameter Pipe wall thickness $\sim 0.5 \mathrm{in}$.
Takes oil 11.9 days to travel the length at an average speed of $3.7 \mathrm{mph}(6.0 \mathrm{kph})$

Pipe Flows - Head Losses

$$
\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{\text {out }}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{\text {in }}-H_{L}+H_{S}
$$

where

$$
\begin{aligned}
& \alpha=\left\{\begin{array}{cc}
2 & R e_{D}<2300 \text { (laminar) } \\
1 & R e_{D}>2300 \text { (turbulent) }
\end{array}\right. \\
& H_{S}=\frac{\dot{W}_{\text {other }, \text { on } C V}}{\dot{m} g}
\end{aligned}
$$

Steady, Laminar, Viscous, Newtonian Fluid Flow Through a Circular Pipe

Assumptions:

1. steady flow
2. fully developed flow in the z direction
3. no body forces
4. axi-symmetric flow with no swirl component

Continuity Equation and Navier-Stokes Equation in the z direction:

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0 \\
& \rho\left(\frac{\partial u_{z}}{\partial t}+u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right]+\rho g_{z}
\end{aligned}
$$

Boundary Conditions:

1. No slip at the pipe circumference
2. Flow velocity remains finite

Velocity profile:

$$
\begin{aligned}
& u_{z}=\frac{R^{2}}{4 \mu}\left(-\frac{d p}{d z}\right)\left(1-\frac{r^{2}}{R^{2}}\right) \\
& R e_{D}=\frac{\bar{u} D}{v}<2300
\end{aligned}
$$

Average velocity:

$$
\bar{u}=\frac{1}{\pi R^{2}} \int_{r=0}^{r=R} u_{z}(r)(2 \pi r d r)=\frac{1}{2} u_{\max }=\frac{D^{2}}{32 \mu}\left(-\frac{d p}{d z}\right)
$$

Wall shear stress:

$$
\begin{aligned}
& \tau_{w}=\left.\mu \frac{d u}{d r}\right|_{r=R}=\frac{R}{2}\left(\frac{d p}{d z}\right)=-\frac{4 \mu \bar{u}}{R} \\
& f_{D} \equiv\left|\frac{4 \tau_{w}}{\frac{1}{2} \rho \bar{u}^{2}}\right|=\frac{32 \mu}{\rho \bar{u} R}=\frac{64}{R e_{D}}
\end{aligned}
$$

Pipe Flows - Head Losses

Revisiting the average velocity equation:

$$
\begin{aligned}
& \bar{u}=\frac{D^{2}}{32 \mu}\left|\frac{\Delta p}{L}\right| \Rightarrow \frac{\Delta p}{\frac{1}{2} \rho \bar{u}^{2}}=\frac{64 \mu}{\rho D \bar{u}} \frac{L}{D}=64 \frac{\mu}{\rho \bar{u} D} \frac{L}{D}=\frac{64}{R e_{D}} \frac{L}{D} \\
& k \equiv \frac{\Delta p}{\frac{1}{2} \rho \bar{u}^{2}} \\
& k_{\text {major }}=f_{D}\left(\frac{L}{D}\right) \\
& \left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{\text {out }}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{\text {in }}-H_{L}+H_{S}
\end{aligned}
$$

Pipe Flows - Head Losses

Average Roughness of Commercial Pipes

Material (new)	ft	mm
Riveted steel	$0.003-0.03$	$0.9-9.0$
Concrete	$0.001-0.01$	$0.3-3.0$
Wood stave	$0.0006-0.003$	$0.18-0.9$
Cast iron	0.00085	0.26
Galvanized iron	0.0005	0.15
Asphalted cast iron	0.0004	0.12
Commercial steel or wrought iron	0.00015	0.045
Drawn tubing	0.000005	0.0015
Plastic, glass	0.0 (smooth)	0.0 (smooth)

Table of Minor Loss Coefficients

Component

K \qquad
Component
K
a. Elbows

Regular 90°, flanged	0.3
Regular 90°, threaded	1.5
Long radius 90°, flanged	0.2
Long radius 90°, threaded	0.7
Long radius 45°, flanged	0.2
Regular 45°, threaded	0.4

b. $\quad 180^{\circ}$ return bends
180° return bends, flanged 0.2
180° return bends, threaded $\quad 1.5$
c. Tees

Line flow, flanged 0.2
Line flow, threaded 0.9
Branch flow, flanged $\quad 1.0$
Branch flow, threaded 2.0
d. Union, threaded 0.06
h. Sudden Contraction/Expansion:
e. Valves
Globe, fully open 10

Angle, fully open 2
Gate, fully open 0.15
Gate, $1 / 4$ closed $\quad 0.26$
Gate, $1 / 2$ closed 2.1
Gate, $3 / 4$ closed $\quad 17$
Swing check, forward flow 2
Swing check, backward flow ∞
Ball valve, fully open 0.05
Ball valve, $1 / 3$ closed 5.5
Ball valve, $2 / 3$ closed 210
f. Entrances

Re-entrant 0.8
Sharp-edged 0.5
Slightly rounded 0.2
Well rounded 0.04
g. Exits

Re-entrant, sharp-edged,
slightly rounded, well-rounded 1

Fig. 8.15 Loss coefficients for flow through sudden area changes. (Data from [1].)
Butterfly Valve: The
closing mechanism is
provided by a disc that sits
in the middle of the valve
body, and rotates. When
the lever is turned, his disc
moves sideways or upright
to allow or block the flow
of water.

Classification of Valves Types

http://mechanicstips.blogspot.com/2016/02/types-of-valves.html

