
Recall that the Momentum Equations, which are true for any fluid, are: 

 
 
For a Newtonian fluid, the stresses are related to the velocity gradients (out of the scope of ME309), 

 

 
Substituting the stress relations into the Momentum Equations, assuming an incompressible fluid (so the 
divergence terms are zero), assuming uniform dynamic viscosity (so it comes outside the derivatives), and 
letting the only body force be the gravitational force, we arrive at the Navier-Stokes Equations for an 
incompressible, Newtonian fluid with uniform dynamic viscosity: 
 

 

 
These equations may be written more compactly as: 
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The Momentum Equation in the x-direction is: 
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Expand the derivatives on the LHS of the equation: 
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Group terms on the LHS: 
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The 1st term in square brackets on the LHS is the Continuity Equation!  Thus, this term is zero.  The 2nd term in 
square brackets on the LHS is the acceleration of a fluid particle in the x-direction: 
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Similar derivations can be performed in the y and z directions. 
 
Thus, the momentum equations in all three Cartesian directions are: 
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Chapter 08:  Navier-Stokes Solutions 

1. A Few Comments Regarding Exact Solutions to the Navier-Stokes Equations 
 
Because there is no general method for solving a system of non-linear, partial differential equations, there 
are only a few exact solutions to the governing equations of fluid mechanics.  For an incompressible fluid 
with constant viscosity, the equations governing the fluid motion are the continuity and Navier-Stokes 
equations: 
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In general, we must make a number of assumptions to simplify the governing equations so that they 
become manageable analytically.  In particular, we often simplify the equations so that the non-linear 
convective term in the Navier-Stokes equations, (u⋅∇)u, is zero.  Although we need to make many 
assumptions in determining exact solutions, the resulting solutions are still of great engineering value.  
They are often good models for real-world flows and they are commonly used to validate numerical codes 
and experimental methods. 
 
One assumption we’ll make in all of the solutions is that the flow is laminar as opposed to being turbulent 
or transitional.  A laminar flow means that the fluid moves in smooth layers (or lamina).  A turbulent flow 
is one in which the fluid flows in an almost chaotic manner with a number of vortices of different size and 
nearly random spatial and temporal variations in the fluid velocity.  A transitional flow is one between the 
laminar and turbulent states where the flow is mostly laminar but with occasional turbulent fluctuations.   
 
Boundary Conditions (BCs) 
 
When solving the governing equations of fluid dynamics, we’ll need to apply boundary conditions (BCs) 
for specific flow geometries.  Two common types of BCs include kinematic and dynamic boundary 
conditions.  Kinematic boundary conditions specify the fluid velocity.  One example is the no-slip 
boundary condition which states that at either a solid boundary or fluid interface, the fluid velocity must be 
continuous: 
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Another common kinematic boundary condition is that fluid velocities must remain finite.  Dynamic 
boundary conditions specify that stresses must be continuous across solid or fluid interfaces: 
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where the subscripts “nn” and “ns” refer to the normal and shear stresses at the boundary with the normal 
vector n̂ . 
 
 
Now let’s investigate some exact solutions. 
 
Note that there are many graduate level texts that review more exact solutions than will be presented in 
these notes.  Several good references include: 

White, F.M., Viscous Fluid Flow, McGraw-Hill. 
Panton, R.L., Incompressible Flow, Wiley. 
Currie, I.G., Fundamental Mechanics of Fluids, McGraw-Hill. 
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