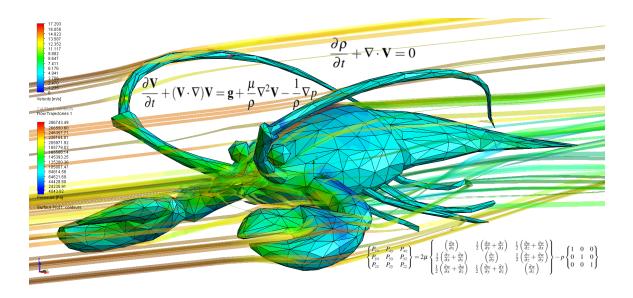
The Navier-Stokes Equations



The Navier-Stokes Equations

The Momentum Equations

$$\rho \left(\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} \right) = \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + \frac{\partial \sigma_{zx}}{\partial z} \right) + \rho g_x$$

$$\rho \left(\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} \right) = \left(\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{zy}}{\partial z} \right) + \rho g_y$$

$$\rho \left(\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} \right) = \left(\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} \right) + \rho g_z$$

Stress-Strain Rate Constitutive Relations for a Newtonian Fluid

$$\sigma_{xx} = -p + \mu \left[2 \frac{\partial u_x}{\partial x} - \frac{2}{3} (\nabla \cdot \mathbf{u}) \right]$$

$$\sigma_{yy} = -p + \mu \left[2 \frac{\partial u_y}{\partial y} - \frac{2}{3} (\nabla \cdot \mathbf{u}) \right]$$

$$\sigma_{zz} = -p + \mu \left[2 \frac{\partial u_z}{\partial z} - \frac{2}{3} (\nabla \cdot \mathbf{u}) \right]$$

$$\sigma_{xy} = \sigma_{yx} = \mu \left[\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right]$$

$$\sigma_{xz} = \sigma_{zx} = \mu \left[\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right]$$

$$\sigma_{yz} = \sigma_{zy} = \mu \left[\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right]$$

Navier-Stokes Equations

(Momentum Equations for an incompressible, Newtonian Fluid with uniform dynamic viscosity):

$$\rho \left(\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right) + \rho g_x$$

$$\rho \left(\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) + \rho g_y$$

$$\rho \left(\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) + \rho g_z$$

The Navier-Stokes Equations

In Words	In Mathematics	Comments
steady flow	$\frac{\partial}{\partial t} (\cdots) = 0$	Nothing varies with time.
planar flow (in the <i>z</i> -direction)	$\frac{\partial}{\partial z}(\cdots) = 0, \ u_z = \text{constant}$	There is no variation in the <i>z</i> direction and the velocity component is, at most, a constant in that direction.
axi-symmetric flow (in the θ -direction)	$\frac{\partial}{\partial \theta} \Big(\cdots \Big) = 0$	There is no variation in the θ direction.
no "swirl" velocity component	$u_{\theta} = 0$	There is no velocity component in the θ direction.
fully developed flow in the direction	$\frac{\partial u_x}{\partial \dots} = \frac{\partial u_y}{\partial \dots} = \frac{\partial u_z}{\partial \dots} = 0$	The velocity components don't change in the direction.
velocity remains finite	$\mathbf{u} < \varepsilon$ where ε is some constant	The flow speed always remains bounded. It never goes to infinity.

Some Common Assumptions Used To Simplify The Continuity and Navier-Stokes Equations

Some Common Boundary Conditions Used When Solving Navier-Stokes Equation Problems

In Words	In Mathematics	Comments
no slip at a boundary	$\mathbf{u}_{\mathrm{fluid}} = \mathbf{U}_{\mathrm{boundary}}$	The fluid velocity is continuous at the boundary. This condition is true for both solid and fluid boundaries.
continuous stress at a boundary	$\sigma_{nn,fluid} = \sigma_{nn,boundary}$ $\sigma_{ns,fluid} = \sigma_{ns,boundary}$ (The top stress is a normal stress and the bottom stress is a shear stress.)	The stresses in the normal (<i>n</i>) and tangential (<i>s</i>) directions are continuous at a boundary. This condition is true for both solid and fluid boundaries.

General NS Solution Approach