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5.4. The Momentum Equations (aka the Linear Momentum Equations for a Di↵erential Control
Volume)

The Momentum Equations, which are the Linear Momentum Equations for a di↵erential fluid element or
control volume, can be derived several di↵erent ways. Three of these methods are given in this section.

Method 1: Apply the integral approach to the di↵erential control volume shown in Figure 5.12. Assume that

Figure 5.12. The di↵erential control volume on which the Linear Momentum Equations
are applied.

the density and velocity are ⇢ and u, respectively, at the control volume’s center. Consider the x-momentum
equation first. The x-momentum flow rate through each of the side of the control volume is,
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where ṁx,center is the mass flow rate in the x-direction at the center of the control volume. Similarly,
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(ṁyux)out through top =


⇢uyux +

@

@y
(⇢uyux)

✓
1

2
dy

◆�
(dxdz) , (5.99)
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Thus, the net x-momentum flow rate out of the control volume is,
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The rate at which the x-momentum increases within the control volume is,
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where ⇢ and ux are the density and x-component of the velocity, respectively, at the center of the control
volume. Note that since these quantities vary linearly within the control volume (from the Taylor Series
approximation), the averages within the control volume are simply ⇢ and ux.

The forces acting on the control volume include both body and surface forces. The body force acting on the
control volume in the x-direction, FB,x, can be written as,

FB,x = fB,x⇢ (dxdydz) , (5.104)

where fB,x is the body force per unit mass acting in the x-direction. For example, for weight, the body force
per unit mass acting in the x-direction is simply gx.

The surface forces acting on the control volume include both normal and tangential forces. Writing the
surface force acting in the x-direction, FS,x, in terms of stresses,
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The Linear Momentum Equation in the x-direction states that the rate of increase of x linear momentum
within the control volume plus the net rate at which x linear momentum leaves the control volume must
equal the net force in the x direction acting on the control volume,

@

@t
(mux)within CV + (ṁux)net, out of CV = FB,x + FS,x. (5.107)

Substituting Eqs. (5.102), (5.103), (5.104), and (5.106) into Eq. (5.107) gives,
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A similar approach can be taken to determine the y and z-components of the Momentum Equations. All
three components of the Momentum Equations can be written in the following compact (index notation)
form,
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In vector notation, the Momentum Equations can be written as,
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Note that �T = � since the stress tensor is symmetric.
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Expanding the left-hand side of Eq. (5.110) and utilizing the Continuity Equation,
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Substituting back into Eq. (5.110),
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Method 2: Apply Newton’s Second Law directly to a small piece of fluid,
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where the determination of the body and surface forces are described in Method 1. Expanding the Lagrangian
derivative gives,
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but the second term on the right-hand side of this equation is zero since the mass of the fluid element remains
constant. Thus, Eq. (5.114) can be simplified to,
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which is the same result found using Method 1.

Method 3: Recall that the integral form of the Linear Momentum Equations is,
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Consider a fixed control volume so that,
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Note that the body force can be written as,
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and the surface forces can be written as,
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Utilizing Gauss’ Theorem (aka the Divergence Theorem), we can convert the area integrals into volume
integrals, ˆ
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Substituting these expressions back into the Linear Momentum Equations,ˆ
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Since the choice of control volume is arbitrary, the kernel of the integral must be zero, i.e.,
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This is the same expression as Eq. (5.110) so we see that the final result will be the same,
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Notes:

(1) In order to be more useful to us, we need to have some way of relating the stresses acting on the fluid
element (or control volume) to other properties of the flow, namely the velocities. This connection
is accomplished using a constitutive law, which in this case relates the stresses to the strain rates
for a particular fluid or class of fluids.

(2) Equation (5.113) is valid for any continuous substance.
(3) Equation (5.110) is the conservative form (i.e., Eulerian form) of the Linear Momentum Equations.

Equation (5.113) is the non-conservative form (i.e., Lagrangian form).
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Consider the flow of a mixture of liquid water and small water vapor bubbles.  The bubble diameters are 
very small in comparison to the length scales of interest in the flow so that the properties of the mixture can 
be considered point functions.  For example, the density of the mixture at a “point” can be written as: 

 
where rM is the mixture density, rL is the liquid density, rV is the vapor density, and a is the “void 
fraction” or the fraction of volume that is vapor in a unit volume of the mixture.  Assume that evaporation 
occurs at the bubble surface so that the liquid water turns to water vapor at a mass flow rate per unit volume 
denoted by s. 
 
a. What is the continuity equation for the mixture? 
b. What is the continuity equation for the liquid water phase? 
c. What are the momentum equations for the liquid water phase?   
 
 
SOLUTION: 
 
The continuity equation for the mixture will be the “normal” continuity equation: 

 (1) 

To show that this relation is true, consider the control volume shown below. 
 
 
 
 
 
 
 
 

The rate of change of mass within the control volume is: 

 (2) 

 
The net mass flux into the CV in the x-direction is: 

 (3) 

Following a similar approach in the y and z directions gives: 

 (4) 
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Thus, from conservation of mass: 
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To determine the continuity equation for the liquid water phase, consider the control volume drawn below 
where the CV surrounds each vapor bubble.  
 
 
 
 
 
 
 
 
 
 
The rate of change of liquid mass within the control volume is: 

     (8) 

 
The net liquid mass flux into the CV in the x-direction is: 

 (9) 

Following a similar approach in the y and z directions gives: 

 (10) 

 (11) 

The rate at which liquid mass is being converted to vapor mass is: 
 (12) 

 
Thus, from conservation of mass: 

 (13) 

  (continuity eqn. for liquid phase) (14) 

 
To determine the momentum equations for the liquid phase, apply the momentum equation to the same 
control volume used to derive the liquid phase continuity equation.  The change in momentum of liquid 
within the CV is: 

 (15) 

 
The net flux of linear momentum out of the CV through the sides of the CV is: 

 (16) 

(Note that the term involving s is the rate at which momentum leaves the liquid phase due to the fact 
that the liquid is evaporating.) 
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The surface forces acting on the control surface are: 

 (17) 

Note that the stress terms are the surfaces forces acting on the sides of the CV.  The term fVonL,i is the force 
per unit mass that the vapor phase exerts on the liquid phase, and the last term in Eqn. (17) is the body 
force acting on the liquid phase where gi is the body force per unit mass. 
 
Substituting into the linear momentum equation and simplifying results in: 

 (18) 

 
The continuity equation derived previously for the liquid phase (Eqn. (14)) could be used to further 
simplify the momentum equation, if desired. 
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