
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

4.4.1. The LME using a Non-inertial Coordinate System

Recall that Newton’s Second law holds strictly for inertial (non-accelerating) coordinate systems. Now let’s
consider coordinate systems that are non-inertial (accelerating). First examine how we can describe the
motion of a particle in an accelerating coordinate system, call it frame xyz, in terms of a non-accelerating
coordinate system, call it frame XYZ (Figure 4.10).

Figure 4.10. A schematic illustrating a particle’s movement in two coordinate systems.

The position of a particle in XYZ is given by rXYZ and in xyz the particle’s position is given by rxyz. The
two position vectors are related by the position vector of the origin of xyz in XYZ, rxyz/XYZ ,

rXYZ = rxyz/XYZ + rxyz. (4.57)

The velocity of the particle in XYZ can be found by taking the time derivative of the position vector, rXYZ ,
with respect to XYZ (as indicated by the subscript XYZ in the following equation),

drXYZ

dt

����
XYZ

=
drxyz/XYZ

dt

����
XYZ

+
drxyz
dt

����
XYZ

. (4.58)

The time derivative of rxyz/XYZ is simply the velocity of the origin of xyz with respect to XYZ, uxyz/XYZ ,

drxyz/XYZ

dt

����
XYZ

= uxyz/XYZ . (4.59)

We must be careful, however, when evaluating the time derivative of rxyz in XYZ since both the magnitude
of rxyz and the basis vectors of xyz can change with time (the basis vectors of xyz can change due to rotation
of the xyz with respect to XYZ). To calculate the time derivative of rxyz in XYZ, let’s first write rxyz as a
magnitude, rxyz, multiplied by the basis vectors of xyz, êxyz, then use the product rule to evaluate the time
derivative,

drxyz
dt

����
XYZ

=
d(rxyzêxyz)

dt

����
XYZ

=
drxyz
dt

����
XYZ

êxyz + rxyz
dêxyz
dt

����
XYZ

. (4.60)

Note that,
drxyz
dt

����
XYZ

êxyz = uxyz, (4.61)

is the velocity of the particle in xyz.

The time derivative of the xyz basis vectors is found from geometric considerations. Consider the drawing
shown in Figure 4.11 illustrating the change in the x-basis vector as a function of time. For simplicity, we’ll
assume that the rotation only occurs in the xy plane, i.e., �✓x = �✓y = 0. The time derivative of the basis
vector is,

dêx
dt

= lim
�t!0

êx(t+�t)� êx(t)

�t
. (4.62)
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Figure 4.11. A schematic showing how the êx basis vector changes due to rotation in the
xy plane.

Note from the figure that,

êx(t+�t)� êx(t) = [êx(t) cos�✓z + êy(t) sin�✓z]� êx(t), (4.63)

= êx(t)(cos�✓z � 1) + êy(t) sin�✓z. (4.64)

In addition, as �t ! 0, �✓z ! 0 and,

(cos�✓z � 1) ⇡ [1� (�✓z)
2/2]� 1 = �1

2
(�✓z)

2 and sin�✓z ⇡ �✓z, (4.65)

so that,

dêx
dt

= lim
�t!0

êx(t+�t)� êx(t)

�t
= lim

�t!0

� 1
2 (�✓z)2êx(t) +�✓z êy

�t
, (4.66)

=
d✓z
dt

êy (since �✓z ⌧ 0), (4.67)

) dêx
dt

= !z êy where !z =
d✓z
dt

. (4.68)

In general, it can be shown that,

dêxyz
dt

����
XY Z

= !xyz/XYZ ⇥ êxyz, (4.69)

so that,

rxyz
dêxyz
dt

����
XYZ

= rxyz(!xyz/XYZ ⇥ êxyz) = !xyz/XYZ ⇥ rxyz. (4.70)

Combining Eqs. (4.58) - (4.61) and (4.70), we find that the velocity of a fluid particle in the inertial coordinate
system XYZ is,

uXYZ| {z }
velocity of particle

in XYZ

= uxyz/XYZ| {z }
velocity of xyz
w/r/t XYZ

+ uxyz|{z}
velocity of particle

in xyz

+ !xyz/XYZ ⇥ rxyz| {z }
velocity of particle in XYZ

due to rotation of xyz
w/r/t XYZ

, (4.71)

where uxyz is the particle velocity in non-inertial coordinate system xyz, !xyz/XYZ is the angular velocity of
xyz with respect to XYZ, and rxyz is the position vector of the particle from the origin of xyz.

The acceleration of a particle in XYZ in terms of xyz quantities can be found in a similar manner,

duXYZ

dt

����
XYZ| {z }

=aXYZ

=
duxyz/XYZ

dt

����
XYZ| {z }

=axyz/XYZ

+
duxyz

dt

����
XYZ| {z }

= d
dt (uxyz êxyz)

��
XYZ

+
d

dt
(!xyz/XYZ ⇥ rxyz)

����
XYZ| {z }

=!̇xyz/XYZ⇥rxyz+!xyz/XYZ⇥ d(rxyz êxyz)

dt

��
XYZ

, (4.72)
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where the results from Eqs. (4.60), (4.61), (4.69), and (4.70) are used to simplify the last two expressions in
Eq. (4.72),

d

dt
(uxyzêxyz)

����
XYZ

=
duxyz

dt
êxyz + uxyz

dêxyz
dt

, (4.73)

= axyz + !xyz/XYZ ⇥ uxyz. (4.74)

and,

!xyz/XYZ ⇥ d(rxyzêxyz)

dt

����
XYZ

= !xyz/XYZ ⇥ (uxyz + !xyz/XYZ ⇥ rxyz), (4.75)

= !xyz/XYZ ⇥ uxyz + !xyz/XYZ ⇥ (!xyz/XYZ ⇥ rxyz). (4.76)

Substituting Eqs. (4.74) and (4.76) into Eq. (4.72) and simplifying gives,

aXYZ| {z }
rectilinear acceleration

of particle in XYZ

= axyz/XYZ| {z }
rectilinear acceleration

of xyz w/r/t XYZ

+ axyz|{z}
rectilinear acceleration

of particle in xyz

+ (!̇xyz/XYZ ⇥ rxyz)| {z }
tangential acceleration of
particle in XYZ due to

rotational acceleration of xyz

+ (2!xyz/XYZ ⇥ uxyz)| {z }
Coriolis acceleration of
particle in XYZ due to

rectilinear motion of particle
in xyz

+ [!xyz/XYZ ⇥ (!xyz/XYZ ⇥ rxyz)]| {z }
centripital acceleration of particle
in XYZ due to rotation of xyz

. (4.77)

Now let’s use these relations to determine an expression for the LME using a non-inertial coordinate system.
Recall that the Lagrangian statement for the LME is (refer to Eq. (4.37)),

D

Dt

ˆ
Vsys

uXYZ⇢dV = Fon sys. (4.78)

Substitute Eq. (4.71) into Eq. (4.78) and re-arrange,

Fon sys =
D

Dt

ˆ
Vsys

(uxyz/XYZ + uxyz + !xyz/XYZ ⇥ rxyz)⇢dV, (4.79)

=
D

Dt

ˆ
Vsys

uxyz⇢dV +
D

Dt

ˆ
Vsys

(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)⇢dV. (4.80)

Now use the Reynolds Transport Theorem to convert the first term on the right-hand side to a control volume
and re-arrange,

FB,CV + FS,CV �
D

Dt

ˆ
Vsys

(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)⇢dV

=
d

dt

ˆ
CV

uxyz⇢dV +

ˆ
CS

uxyz (⇢urel · dA) . (4.81)

The remaining Lagrangian term can be simplified by changing the volume integral to a mass integral and
noting that the mass of the system doesn’t change with time,

D

Dt

ˆ
Vsys

(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)⇢dV =
D

Dt

ˆ
Msys

(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)dm, (4.82)

=

ˆ
Msys

D

Dt
(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)dm, (4.83)

=

ˆ
Vsys

D

Dt
(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)⇢dV. (4.84)
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Since uxyz/XYZ and !xyz/XYZ are functions only of time (these variables describe the motion of the coordinate
system xyz and not the fluid), and because Drxyz/Dt = uxyz

1, we can replace the Lagrangian time derivative
with an Eulerian time derivative and substitute in our result from Eq. (4.77),ˆ

Vsys

D

Dt
(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)⇢dV =

ˆ
Vsys

d

dt
(uxyz/XYZ + !xyz/XYZ ⇥ rxyz)⇢dV, (4.85)

=

ˆ
Vsys

[axyz/XYZ + !̇xyz/XYZ ⇥ rxyz + 2!xyz/XYZ ⇥ uxyz + !xyz/XYZ ⇥ (!xyz/XYZ ⇥ rxyz)]⇢dV. (4.86)

Substituting Eq. (4.86) back into Eq. (4.81) and noting that when we apply the Reynolds Transport Theorem
the control volume and system volume are coincident (so that the system volume integral in Eq. (4.86) can be
replaced by a control volume integral), we find that the LME can be applied using a non-inertial coordinate,
xyz, if the following form is used,

FB,CV + FS,CV

�
ˆ
CV

{axyz/XYZ + (!̇xyz/XYZ ⇥ rxyz) + (2!xyz/XYZ ⇥ uxyz) + [!xyz/XYZ ⇥ (!xyz/XYZ ⇥ rxyz)]}⇢dV

=
d

dt

ˆ
CV

uxyz⇢dV +

ˆ
CS

uxyz (⇢urel · dA) .

(4.87)

This is the Linear Momentum Equation using a non-inertial (aka accelerating) coordinate system!

Let’s consider a few examples to see how this form of the LME is applied.

1Drxyz

Dt =
@rxyz
@t| {z }
=0

+ux
@rxyz
@x| {z }
=êx

+uy
@rxyz
@y| {z }
=êy

+uz
@rxyz
@z| {z }
=êz

= uxyz where rxyz = xêx + yêy + zêz
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A jet of water is deflected by a vane mounted on a cart.  The water jet has an area, A, everywhere and is 

turned an angle q with respect to the horizontal.  The pressure everywhere within the jet is atmospheric.  
The incoming jet velocity with respect to the ground (axes XY) is Vjet.  The cart has mass M.  Determine the 
horizontal acceleration of the cart at the instant when the cart moves with velocity Vcart (Vcart<Vjet) if no 
horizontal forces are applied 

 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Apply the linear momentum equation to a control volume surrounding the cart.  Use a frame of reference 
fixed to the cart (xy).  Note that this is not an inertial frame of reference since the cart is accelerating.  As 
before, in this frame of reference the cart appears stationary and the jet velocity at the left is equal to Vjet-
Vcart.  From conservation of mass, the velocity on the right of the control volume is Vjet – Vcart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the linear momentum equation in the x-direction: 

 (1) 

where, 

   

(The cart has zero velocity in this frame of reference.  The fluid in the control volume does accelerate 
in this frame of reference; however, its mass is assumed to be much smaller than the cart mass.  Hence, 
the rate of change of the control volume momentum in this frame of reference is assumed to be zero.)  

rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

q A 

Vjet 

Vcart 

Y 
X 

Fy 

q A 

Vjet - Vcart 

Fy 

y 
x 

Vjet - Vcart 
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Video solution: https://www.youtube.com/watch?v=a9HZTu9x13I

C. Wassgren 417 2021-12-15



  COLM_07b 

Page 2 of 2 

  (no body forces in the x-direction) 

   (all of the pressure forces cancel out) 

 (the mass within the CV is approximately equal to the cart mass) 

Substitute and re-arrange. 

 

 (2) 

 
Now solve the problem using an inertial frame of reference fixed to the ground (frame XY).  The linear 
momentum equation in the X direction gives: 

 (3) 

where, 

 

(The mass within the control volume is approximately equal to the cart mass since the fluid mass is 
assumed to be negligible.)  

  (no body forces in the x-direction) 

   (all of the pressure forces cancel out) 

Substitute and re-arrange. 

 

   (Same answer as before!) (4) 

Using a frame of reference that is fixed to the control volume is easier than using one fixed to the ground. 

( ) ( ) ( )
!

( ) ( )( ) ( )
relrel

rel jet cart jet cart jet cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
x Xu u

xu d V V V V A V V V V Ar r q r q q q q

== = = == éé ù
ê ú

× = - - ×- + - - + × +ê ú
ê ú
ê úë û

ò
uu AA

u A i i i j i j
"#####$#####% "###$###%"##$##% "##$##% "###$###%

&#######'#######(

( ) ( ) ( )

( ) ( )

right side
2 2 2 2

jet cart jet cart

1
2

jet cart

cos cos sin

cos 1

V V A V V A

V V A

r r q q q

r q

=

ù
ê ú
ê ú
ê ú
ê úë û

= - - + - +

= - -

&###############'###############(

&###'###(

, 0B xF =

, 0S xF =

/
CV

x Xa dV Mar =ò

( ) ( )2
jet cart cos 1V V A Mar q- - = -

( ) ( )2
jet cart 1 cosV V A

a
M

r q- -
=

rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV
X

d u dV Ma
dt

r »ò

( )
!

( )
!

( ) ( )( ) ( )
relrel

rel jet jet cart jet cart cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin

X
X

uu

Xu d V V V A V V V V V Ar r q r q q q q

= == == = éé ù
êê ú é ù× = - ×- + - + - + × +êê ú ë ûê ú

ê úë û ë
ò

uu AA
u A i i i j i j

"#####$#####% "#####$#####% "###$###%"##$##%

&#####'#####(

( ) ( ) ( ) ( )

( )

right side
2 2 2

jet jet cart jet cart cart jet cart

1
22 2

jet jet cart jet cart cart jet cart

jet

cos cos sin

cos

V V V A V V V V V A

V V V V V V V V A

V

r r q q q

r q

r

=

ù
ú
ú

ê ú
ê úû

é ù= - - + - + - +ê úë û

é ù= - + + - + -ê úë û

= -

&#################'#################(

&###'###(

( ) ( )

( ) ( )

2 2
cart jet cart

2
jet cart

cos

cos 1

V V V A

V V A

q

r q

é ù- -ê úë û

= - -

, 0B XF =

, 0S XF =

( ) ( )2
jet cart cos 1 0Ma V V Ar q+ - - =

( ) ( )2
jet cart 1 cosV V A

a
M

r q- -
=
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The tank shown rolls along a level track.  Water received from a jet is retained in the tank.  The tank is to 
accelerate from rest toward the right with constant acceleration, a.  Neglect wind and rolling resistance.  
Find an algebraic expression for the force (as a function of time) required to maintain the tank acceleration 
at constant a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First apply conservation of mass to a control volume surrounding the cart (shown below) in order to 
determine how the cart mass changes with time. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 (1) 

where 

 

 

Substitute and re-arrange. 

 

 (2) 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

CV

dMd dV
dt dt

r =ò
( )rel

CS

d V U Ar r× = - -ò u A

( )CV 0dM
V U A

dt
r- - =

( )CVdM
V U A

dt
r= -

A 
 

y 
x 

The frame of reference 
xy is fixed to the cart. 

initial mass of cart and water, 
M0 

U 

A 

V 
F 

F 

jet velocity relative to 
the cart = (V – U) 

 

X 
Y 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=EBTjxf5tSfs
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Since the cart acceleration is constant (= a), we may write: 
    (Note that U(t = 0) = 0 since the cart starts from rest.) (3) 

Note that Eqn. (3) is only true when a = constant.  Otherwise, if a = a(t) one must write the velocity as: 

 (4) 

Substitute Eqn. (3) into Eqn. (2) and solve the resulting differential equation. 

 (5) 

 

 

 (6) 

 
Now apply the linear momentum equation in the x direction to the same control volume.  Note that the 
frame of reference xy is not inertial since the cart is accelerating. 

 (7) 

where 

  (most of the mass inside the CV has zero velocity in the given frame of reference) 

 

 
 

 

Substitute and re-arrange. 
 

 (8) 
Now substitute Eqns. (3) and (6) into Eqn. (8). 

 (9) 

 

U at=

0
0

t

U U adt= + ò

( )CVdM
V at A

dt
r= -

( )
CV CV

CV 0

CV
0

M M t t

M M t

dM V at Adtr
= =

= =

= -ò ò

( )21
CV 0 2M M Vt at Ar- = -

( )21
CV 0 2M M Vt at Ar= + -

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò
( ) ( )2rel

CS
xu d V U Ar r× = - -ò u A

, 0B xF =

,S xF F= -

/ CV
CV

x Xa dV aMr =ò

( )2 CVV U A F aMr- - = - -

( )2 CVF V U A aMr= - -

( ) ( )2 21
0 2F V at A a M Vt at Ar ré ù= - - + -ë û

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=EBTjxf5tSfs
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Now let’s solve the problem using a frame of reference fixed to the ground (XYZ - inertial). 

 

where 

 

 

 
 

Substitute and utilize Eqn. (5) to simplify. 

 

 

 

 (10) 
Eqn. (10) is identical to Eqn. (8) as expected! 

 

( )rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

( ) CV
CV CV

CV
X

dMd d dUu dV M U M U
dt dt dt dt

r = = +ò
( ) ( ) ( ) ( )rel

CS
Xu d V V U A V V U Ar r r× = - - = - -é ùë ûò u A

, 0B XF =

,S XF F= -

( )CV
CV

dMdUM U V V U A F
dt dt

r+ - - = -

( ) ( )CV
dUM U V U A V V U A F
dt

r r+ - - - = -

( ) ( )CVF aM U V U A V V U Ar r= - - - + -

( )2 CVF V U A aMr= - -
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Video solution: https://www.youtube.com/watch?v=EBTjxf5tSfs
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A model solid propellant rocket has a mass of 69.6 gm, of which 12.5 gm is fuel.  The rocket produces 1.3 
lbf of thrust for a duration of 1.7 sec.  For these conditions, calculate the maximum speed and height 
attainable in the absence of air resistance.  Plot the rocket speed and the distance traveled as functions of 
time. 
 
 
SOLUTION: 
 
Assume that the mass flow rate from the rocket is constant.  Also assume that the thrust remains constant 
over the burn duration. 
 
Apply the linear momentum equation in the y-direction to the CV shown using a frame of reference 
attached to the rocket. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (Most of the fluid has zero velocity in this frame of reference.) 

 

  (weight) 

  (The exit pressure may be different from atmospheric pressure.) 

  (We’re using an accelerating frame of reference.) 

 
Substituting and simplifying: 

 

 (1) 

 

( ) , , /
CV CS CV

y y rel B y S y y Y
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0y
d u dV
dt

r »ò
( ) ( ) 2

CS
y rel e e e e e e eu d V V A V Ar r r× = - = -ò u A

,B y CVF M g= -

( ),S y e atm eF p p A= -

/
CV

y Y CVa dV aMr =ò

( )2
e e e CV e atm e CVV A M g p p A M ar- = - + - -

( )2
e e e e atm e

CV

V A p p A
a g

M
r + -

= - +

MCVg 

Ve (pe – patm)Ae 

y 

x 

g 
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Note that the thrust, T, is the force required to hold the rocket stationary (neglecting gravity). 
 
 
 
 
 
 
 

 

where, 

  (Most of the fluid has zero x-velocity.) 

 

 

 

 
Substituting and simplifying: 

 

 (2) 

 
Substitute Eqn. (2) into Eqn. (1): 

 (3) 

 
Apply COM to the same CV:  

 

where 

 

  

Substituting and simplifying: 

 (4) 

Assuming the mass flow rate is a constant, solve Eqn. (4) subject to initial conditions: 

 

 (5) 

where M0 is the initial mass of the CV.   
 

( ) , ,
CV CS

x x rel B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r »ò
( ) ( ) 2

CS
x rel e e e e e e eu d V V A V Ar r r× = =ò u A

, 0B xF =

( ),S x e atm eF p p A T= - - +

( )2
e e e e atm eV A p p A Tr = - - +

( )2
e e e e atm eT V A p p Ar= + -

CV

Ta g
M

= - +

( )
CV CS

0rel
d dV d
dt

r r+ × =ò ò u A

CV

CVdMd dV
dt dt

r =ò
( )

CS
rel e e ed V A mr r× = =ò u A !

0CVdM
m

dt
+ =!

0 0

CVM t

CV
M

dM m dt= -ò ò!

0CVM M mt= - !

Ve 

(pe – patm)Ae 

x 

T 
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Substitute Eqn. (5) into Eqn. (3) and solve the differential equation for the velocity: 

 

 (6) 

 
Solve the differential equation given in Eqn. (6) for the height of the rocket. 

 

 (7) 

 
Note that Eqns. (3), (5), (6), and (7) are written specifically for when the fuel is burning.  When the fuel has 
been expended, the rocket equations of motion are: 

 (8) 

 (9) 

 (10) 

where t’ is the time at which the fuel has been expended. 
 
For the given problem we’re told: 

M0 = 69.6 g 
Mfuel = 12.5 g 
T = 1.3 lbf = 5.79 N 
t’ = 1.7 sec 

giving a mass flow rate of: 

7.35 g/sec = 7.35*10-3 kg/sec 

 
The maximum velocity will occur at the moment the fuel has been expended (neglecting the velocities as 
the rocket falls back to the ground).  The maximum height will occur when the velocity is zero. 
 

Umax = U(t = t’ = 1.7 sec) = 139.2 m/s    (h(t = t’) = 114 m) 
hmax = h(t = tm = 15.9 sec) = 1100 m 
 
The maximum height occurs when: 

 

0

00 0 0

0

0

ln

U t t

dU Ta g
dt M mt

TdtdU gdt
M mt

M mtTU gt
m M

= = - +
-

= - +
-

æ ö-
= - - ç ÷

è ø

ò ò ò

!

!

!
!

0

ln 1T mtU gt
m M

æ ö
= - - -ç ÷

è ø

!
!

0

00 0 0

ln 1

ln 1
h t t

dh T mtU gt
dt m M

T mtdh gtdt dt
m M

æ ö
= = - - -ç ÷

è ø
æ ö

= - - -ç ÷
è ø

ò ò ò

!
!

!
!

2 01
2

0 0

ln 1 ln 1MT mt mth gt t t
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The rocket speed and height are plotted below: 
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A cart with frictionless wheels holds a water tank, motor, pump, and nozzle.  The cart is on horizontal 
ground and initially still.  At time zero the cart has a mass M0 and the pump is started to produce a jet of 
water with constant area Aj, velocity Vj at an angle q with respect to the horizontal.  Find and solve the 
equations governing the mass and velocity of the cart as a function of time. 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to a control volume surrounding the cart.  Use a 
frame of reference fixed to the control volume (non-inertial). 
 
 
 
 
 
 
 
 

 

where 

  

(Using the given FOR, the rate of change of the CV linear momentum is nearly zero since most of the 
mass in the CV has a constant (=0) horizontal velocity.) 

 

 

 

  (Note that the CV mass changes with time.) 

 
Substitute and solve for the cart acceleration. 

 (1) 

 
Determine the mass inside the control volume using conservation of mass applied to the same control 
volume. 

 

where 

  

 

 

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

( ) ( )( ) 2
rel

CS

cos cosx j j j j ju d V V A V Ar q r r q× = - = -ò u A

, 0B xF =

, 0S xF =

/ CV
CV

x X
dUa dV M
dt

r =ò

2

CV

cosj jV AdU
dt M

r q
=

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

CV

dMd dV
dt dt

r =ò

rel
CS

j jd V Ar r× =ò u A

q r, Vj, Aj 

U 
x 

y 
The frame of reference is fixed to 
the (accelerating) control volume 
and, hence, is non-inertial. 
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Substitute and solve for MCV. 

 

  (Note that rVjAj is constant with respect to time.) 

 (2) 

 
Substitute Eqn. (2) into Eqn. (1) and solve for U. 

 

 

 

 (3) 

 

CV
j j

dM
V A

dt
r= -

CV

0

CV
0

M t

j j
M

dM V A dtr= -ò ò

CV 0 j jM M V A tr= -

2

0

cosj j

j j

V AdU
dt M V A t

r q
r

=
-
2

00 0

cosU t
j j

j j

V A dt
dU

M V A t
r q

r
=

-ò ò
2

0

0

cos
lnj j j j

j j

V A M V A t
U

V A M
r q r

r
-æ ö

= ç ÷- è ø

0

cos ln 1 j j
j

V A t
U V

M
r

q
æ ö
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è ø
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A flat plate of mass, M, is located between two equal and opposite jets of liquid as shown in the figure.  At 
time t=0, the plate is set into motion.  Its initial speed is U0 to the right; subsequently its speed is a function 
of time, U(t).  The motion is without friction and parallel to the jet axes.  The mass of liquid that adheres to 
the plate is negligible compared to M. 

 
Obtain algebraic expressions (as functions of time for t>0) for: 
a. the velocity of the plate and 
b. the acceleration of the plate. 
c. What is the maximum displacement of the plate from its original position? 
Express all of your answers in terms of (a subset of) U0, V, A, r, M, and t. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to a control volume that surrounds the plate as 
shown in the figure below.  Use a frame of reference (FOR) that is fixed to the control volume (non-
inertial). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (The CV’s x-linear momentum is approximately zero in the given FOR.) (2) 

( )rel , ,
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

U(t) 

A A 

r,V r,V 

plate with mass, M 

U(t) 

A A 

r,V r,V 

plate with mass, M 

x 
y 
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 (3) 

  (No body or surface forces in the x-direction.  The pressure everywhere is patm.) (4) 

 

  (Assume the plate mass is much larger than the water mass in the CV.) (5) 

 
Substitute and simplify. 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

The acceleration is found by differentiating the velocity. 

 (11) 

 
The displacement of the plate is found by integrating the velocity in time. 

 (12) 

 (13) 

 (14) 

The maximum displacement occurs as t ® ¥. 

 (15) 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

rel
CS left side right side

2 2

2 2 2 22 2

4

xu d V U V U A V U V U A

V U A V U A

V UV U V UV U A
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r r
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× = - - - + - + - +é ù é ù é ù é ùë û ë û ë û ë û

= - - + +
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!""""#""""$ !"""""#"""""$
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x X
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dt
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dt
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U U t
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0
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MU VAtx
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0
max 4

MU
x

VAr
\ =

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=e1LkxLpxEG0

C. Wassgren 429 2021-12-15



  COLM_20 

Page 1 of 3 

The pressure waves created by a rapid change of flow in a water line are referred to as water-hammers.  To 
analyze the behavior of this phenomenon, consider a fluid flowing at speed U in a rigid pipe.  The flow is 
stopped by a sudden closure of a valve.  The pressure and the density of the fluid near the valve are 
suddenly increased by an amount Dp and Dr, respectively, and a pressure wave propagates upstream of the 
valve with speed, a.   
 
a. Show that the increase in pressure, Dp, and the wave speed, a, are related by: 

 

b. The bulk modulus K = r (dp/dr) is 43x106 lbf/ft2 for water.  Compute the wave speed a in a rigid 
pipe and Dp due to a sudden stoppage of water flowing with a speed of 1ft/s.  You may assume that 
the pressure change across the wave is sufficiently weak to be considered an acoustic wave for the 
given conditions.  

 

 
 
SOLUTION: 
 
Apply conservation of mass and the linear momentum equation to a control volume surrounding the 
pressure wave. 
 
 
 
 
 
 
 
Change the frame of reference so that wave appears stationary. 
 
 
 
 
 
 
Apply conservation of mass to the control volume. 

 (1) 

where 

  (steady in the given frame of reference) (2) 

Δp = ρU U + a( )

a U + a( ) = Δp
Δρ

d
dt

ρ dV
CV
∫ + ρurel ⋅dA

CS
∫ = 0

d
dt

ρ dV
CV
∫ = 0

u = a 
r + Dr 
p + Dp 

u = U + a 
r  
p  

u = 0 
r + Dr 
p + Dp 

u = U 
r  
p  

a closed 
valve 

X 

A 
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 (3) 

Combine and simplify. 
  (4) 

  (5) 
 
Apply the linear momentum in the x-direction using an inertial frame of reference. 

  (6) 

where 

  (steady in the given frame of reference) (7) 

 (8) 

 (9) 

 (10) 
Combine and simplify. 

  (11) 

  (12) 

  (making use of Eq. (5)) (13) 

  (14) 

  (15) 
Note that if U ≪ a, which is typically the case, then Eq. (15) becomes, 

  (16) 
 

Re-arranging Eq. (15) to solve for r gives, 

   (17) 

Substitute this relation into Eq. (5) and simplify. 

  (18) 

  (19) 

 (20) 

  (21) 

 (22) 

 (23) 

Again, if U ≪ a, then this relation becomes, 

ρurel ⋅dA
CS
∫ = −ρ U + a( )A + ρ + Δρ( )aA

−ρ U + a( )A + ρ + Δρ( )aA = 0

ρ U + a( ) = ρ + Δρ( )a

d
dt

uXρ dV
CV
∫ + uX ρurel ⋅dA( )

CS
∫ = FB,X + FS,X

d
dt

uXρ dV
CV
∫ = 0

uX ρurel ⋅dA( )
CS
∫ = −ρ U + a( )2 A + ρ + Δρ( )a2A

FB,X = 0

FS,X = pA − p + Δp( )A

−ρ U + a( )2 A + ρ + Δρ( )a2A = pA − p + Δp( )A
−ρ U + a( )2 + ρ + Δρ( )a2 = −Δp

−ρ U + a( )2 + ρ U + a( )a = −Δp

ρ U + a( ) U + a( )− a⎡⎣ ⎤⎦ = Δp

Δp = ρU U + a( )

Δp = ρUa

ρ = Δp
ρU U + a( )

U + a( ) = 1+ Δρ
ρ

⎛
⎝⎜

⎞
⎠⎟
a

U + a( ) = 1+U U + a( )Δρ
Δp

⎡
⎣
⎢

⎤
⎦
⎥a

U + a( )
a

= 1+U U + a( )Δρ
Δp

Δρ
Δp

= 1
U U + a( )

U + a( )
a

−1⎡
⎣⎢

⎤
⎦⎥

Δp
Δρ

=U U + a( ) a
U + a( )− a

⎡

⎣
⎢

⎤

⎦
⎥

Δp
Δρ

= a U + a( )
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  (24) 

In addition, if the wave is weak, meaning that the change in pressure and density across the wave are 
infinitesimally small, i.e., a sound wave, then Eq. (24) becomes, 

  (25) 

 
The bulk modulus is defined as, 

, (26) 

Since the wave is assumed to be an acoustic wave for the given conditions (refer to Eq. (25)), 

   Þ      (27) 

 
The pressure change across the wave is found from Eq. (15).  Using the given data, 

K = 43*106 lbf/ft2 
r = 1.94 slug/ft3 
U = 1 ft/s 
Þ  a = 4710 ft/s  and Dp = 9.14*103 psf = 63.4 psi 

Note that U ≪ a and dr/r ≪ 1, consistent with the assumption of an acoustic wave. 

Δp
Δρ

= a2

dp
dρ

= a2

K ≡ ρ dp
dρ

a2 = dp
dρ

a = K
ρ
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A block of mass, M=10 kg, with rectangular cross-section is arranged to slide with negligible friction along 
a horizontal plane.  As shown in the sketch, the block is fastened to a spring that has stiffness such that 
F=kx where k=500 N/m.  The block is initially stationary.  At time, t=0, a liquid jet begins to impinge on 
the block (the jet properties are also shown in the sketch).  For t>0, the block moves laterally with speed, 
U(t). 

a. Obtain a differential equation valid for t>0 that could be solved for U(t) and X(t).  Do not solve. 
b. State appropriate boundary conditions for the differential equation of part (a). 
c. Evaluate the final displacement of the block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 
Apply the linear momentum equation in the x-direction to a control volume surrounding the block.  Use a 
frame of reference that is fixed to the control volume (non-inertial). 
 
 
 
 
 
 
 
 
 
 

 

 

where 

   

(Although the fluid mass in the CV will change its velocity with time (the block mass using the given 
FOR is always zero), this time rate of change of momentum within the CV will be very small 
compared to the other terms in COLM and can be reasonably neglected.) 

 

 
 

   

(Assume the block mass is much greater than the water mass in the CV.) 

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

( ) ( ) ( ) ( )2rel
CS

xu d V U V U A V U Ar r r× = - - - = - -é ùë ûò u A

, 0B xF =

,S xF kX= -

/ CV
CV

x X
dU dUa dV M M
dt dt

r = »ò

r=1000 kg/m3 
V=30 m/s 
A=100 mm2 

M 

k 

X 

r=1000 kg/m3 
V=30 m/s 
A=100 mm2 

M 
F 

X 

x 
y 

U 
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Substitute and simplify. 

 (1) 

Note that: 

 and   

so that Eqn. (1) becomes: 

 

 (2) 

Note that this is a non-linear 2nd order ODE. 
 

The initial conditions for Eqn. (2) are: 
 (3) 

 (4) 

 
The final position of the block occurs when the acceleration and velocity of the block are zero.  From Eqn. 
(2) we have: 

 

 (5) 

 
Note that we could have also worked this problem using an inertial frame of reference.  Choose one that is 
fixed to the ground.  Linear momentum in the X-direction using this new frame of reference gives: 

 

where 

  (Assume the block mass is much greater than the water mass in the CV.) 

 

 
 

   
Substitute and simplify. 

 

  (This is the same as Eqn. (2)!) 

( )2 dUV U A kX M
dt

r- - = - -

dXU
dt

=
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2

dU d X
dt dt

=

2 2

2
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f
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=
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dt
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X
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dt dt

r »ò
( ) ( ) ( ) ( ) ( )
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x
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V U A

r r r

r r

r

=

× = - - + -é ù é ùë û ë û

= - - + -

= - -

ò u A
!

"##$##%

, 0B xF =

,S xF kX= -

( )2dUM V U A kX
dt
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2 0d X A dX kV X
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r æ ö- - + =ç ÷
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A cart hangs from a wire as shown in the figure below.  Attached to the cart is a scoop of width W (into the 
page) which is submerged into the water a depth, h, from the free surface.  The scoop is used to fill the cart 
tank with water of density, r. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Show that at any instant V=V0M0/M where M is the mass of the cart and the fluid within the cart. 
b. Determine the velocity, V, as a function of time. 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown using the indicated 
frame of reference. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

   

(The x-linear momentum within the CV is approximately zero in the given frame of reference.) 

 

   (The pressure forces on the front and rear portions of the scoop cancel each other out.) 

 

 

( )rel , , /
CV CS CV

x x S x B x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò

( ) ( ) 2
rel

CS
xu d V V hW V hWr r r× = - - =ò u A

, 0S xF =

, 0B xF =

/
CV

x X
dVa dV M
dt

r =ò

V 

stagnant water 

h 

scoop has width, W, into the page 

cart has initial mass, M0 
and initial velocity, V0 

V 

h 

x 

y 
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Substitute and simplify: 

 (1) 

Apply conservation of mass to the same control volume in order to determine the mass as a function of 
time. 

 

where 

 

 

Substitute and simplify: 

 

 (2) 

Substitute Eqn. (2) into Eqn. (1): 

 

 

 

 

 (3) 

 
 

To determine the cart velocity as a function of time, combine Eqns. (1) and (3): 

 

 

 

 (4) 

2 dVV hW M
dt

r = -

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

d dMdV
dt dt

r =ò
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0dM VhW
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0 0

M V

M V

dM dV
M V

= -ò ò
0

0 0 0
ln ln VM V M
M V M V

= - Þ =
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 A cart travels at velocity, U, toward a liquid jet that has a velocity, V, relative to the ground, a density, r, 
and a constant area, A.  The mass of the cart and its contents at time t = 0 is M0 and the cart’s initial velocity 
is U0 toward the jet.  The resistance between the cart’s wheels and the surface is negligible. 
 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the mass flow rate into the cart in terms of (a subset of) r, A, V, U, g, and q. 
b. Determine the acceleration of the cart, dU/dt, in terms of (a subset of) r, A, V, U, g, q, and M(t) 

where M(t) is the mass of the cart and water at time t.  You needn’t solve any integrals or differential 
equations that appear in your answer. 

 
 
SOLUTION: 
 
Apply conservation of mass to a control volume surrounding the cart. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

 (2) 

 (3) 

Note that the rate at which liquid mass enters the CV is  (4) 

 
Substitute and simplify. 

 (5) 

 (6) 

Note that U = U(t). 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

d dMdV
dt dt

r =ò
( )rel

CS

d U V Ar r× = - +ò u A

    
!minto

cart
= − ρurel ⋅dA

CS
∫ = ρ U +V( )A

( ) 0dM U V A
dt

r- + =

( )dM U V A
dt

r= +

V, A, r 

U 

q 
g 

V, A, r 

U 

q 
g x 

y 
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Now apply the linear momentum equation in the x-direction to the same control volume.  Use a frame of 
reference fixed to the cart (non-inertial). 

 (7) 

where 

  (Most of the material in the CV has zero horz. velocity in this FOR.) (8) 

 (9) 

 (10) 
 (11) 

 (12) 

 
Substitute and simplify. 

 (13) 

 (14) 

Note that M = M(t) and U = U(t).  To solve for the motion of the cart, one would need to solve Eqns. (6) 
and (14) simultaneously subject to the initial conditions M(t = 0) = M0 and U(t = 0) = U0. 

 
 
 

( )rel , , /
CV CS CV

x x B x S x x X
d u dV u d F F a dV
dt

r r r+ × = + -ò ò òu A

CV

0x
d u dV
dt

r »ò
( ) ( ) ( ) ( )2rel

CS
xu d U V U V A U V Ar r r× = - + - + = +é ù é ùë û ë ûò u A

, 0B xF =

, 0S xF =

/
CV

x X
dUa dV M
dt

r =ò

( )2 dUU V A M
dt

r + = -

( )2U V AdU
dt M

r +
= -
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The axi-symmetric object shown below is placed in the end of a vertical circular pipe of inner diameter, D.  
A liquid with density, r, is pumped upward through the pipe and discharges to the atmosphere.  Neglecting 
viscous effects, determine the volume flow rate, Q, of the liquid needed to support the object in the position 
shown in terms of d, D, g, r, and M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel out out
CS

d Q V Ar r r× = - +ò u A

axi-symmetric object with mass, M 

D 

d 

g 

Q = ? 

liquid discharges into the atmosphere 

the pipe extends further upstream 

D 

d 

g 

Q = ? 

Vout 

- Let:  Ain = pD2/4 and Aout = p(D2-d2)/4. 
- Choose H such that it is much larger than 

the size of the object (Þ VCV » AinH). z 

streamline H 

Mg 

pinAin 

patmAout 
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Substituting and simplifying gives: 
 

 (2) 

 
Apply the linear momentum equation in the z-direction to the same control volume.  Use the fixed frame of 
reference shown in the figure. 

 (3) 

where 

  (steady flow) 

   

(Note that Eqn. (2) was used in simplifying the momentum flux term.) 
  (H is chosen to be much larger than the object size.) 

  (use gage pressures so pout = patm = 0) 

 
Substitute and simplify. 

 (4) 

 
To determine pin, apply Bernoulli’s equation along a streamline from the inlet to the outlet. 

 (5) 

where 
   (gage pressure) 

   (from Eqn. (2)) 

  
 

Substitute and simplify. 

 (6) 
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Substitute Eqn. (6) into Eqn. (4) and simplify. 

 

 

  where   and   (7) 
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