
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

4.4. The Linear Momentum Equations (LMEs)

In this section we’ll consider Newton’s Second law applied to a control volume of fluid. Recall that linear
momentum is a vector quantity, it has both magnitude and direction, and is given by mass*velocity. In words
and in mathematical terms, Newton’s Second Law for a system is:

The rate of change of a system’s linear momentum is equal to the net force acting on the system.

=) D

Dt

ˆ
Vsys

uXYZ⇢dV

| {z }
LM of system

= Fon sys. (4.37)

where D/Dt is the Lagrangian derivative (implying that we’re using the rate of change as we follow the
system), V is the volume, and ⇢ is the density. The quantity uXYZ represents the velocity of a small piece
of fluid in the system with respect to an inertial (aka non-accelerating) coordinate system XYZ (Figure 4.8).
Recall that Newton’s Second law holds strictly for inertial coordinate systems. Note that a coordinate system
moving at a constant velocity in a straight line is non-accelerating and, thus, is inertial.

Figure 4.8. A system of fluid illustrating the linear momentum associated with a small
piece of fluid.

The term, Fon sys, represents the net forces acting on the system. These forces can be of two di↵erent types.
The first are body forces, Fbody, and the second are surface forces, Fsurface. Body forces are those forces that
act on each piece of fluid in the system, including the interior system volume. Examples include gravitational
and electromagnetic forces. Surface forces are those forces acting only at the surface of the system. Examples
of surface forces include pressure and shear forces. Expanding the force term,

Fon sys = Fbody,on sys + Fsurface,on sys. (4.38)

Using the Reynolds Transport Theorem to convert the left-hand side of Eq. (4.37) from a system point of
view to an expression for a control volume gives,

D

Dt

ˆ
Vsys

uXYZ⇢dV =
d

dt

ˆ
CV

uXYZ⇢dV +

ˆ
CS

uXYZ (⇢urel · dA) . (4.39)

Since the Reynolds Transport Theorem is applied to a coincident system and control volume, the forces acting
on the system will also act on the control volume. Thus,

d

dt

ˆ
CV

uXYZ⇢dV

| {z }
rate of increase
of LM in CV

+

ˆ
CS

uXYZ (⇢urel · dA)

| {z }
net rate at which LM

leaves the CV

= FB,on CV| {z }
net body force

on the CV

+ FS,on CV| {z }
net surface force

on the CV

(4.40)

This is the Linear Momentum Equation for a control volume!

Notes:
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(1) Recall that the LME is a vector expression. There are actually three equations built into Eq. (4.40).
For example, in a rectangular coordinate system (Cartesian coordinates) we have,

d

dt

ˆ
CV

uX⇢dV +

ˆ
CS

uX (⇢urel · dA) = FB,X + FS,X (4.41)

d

dt

ˆ
CV

uY ⇢dV +

ˆ
CS

uY (⇢urel · dA) = FB,Y + FS,Y (4.42)

d

dt

ˆ
CV

uZ⇢dV +

ˆ
CS

uZ (⇢urel · dA) = FB,Z + FS,Z (4.43)

(2) When applying the Linear Momentum Equations, Conservation of Mass is often used too. This
point is illustrated in the examples at the end of this section.

(3) Note that the velocity uXYZ in the CV term in Eq. (4.40) is the velocity of fluid within the CV using
inertial coordinate system XYZ. The velocity uXYZ in the CS term of Eq. (4.40) is the velocity of
fluid as it crosses the CS using inertial coordinate system XYZ. The subscript on the integral is
important!

(4) It is important to distinguish between the two velocities uXYZ and urel in the CS term in Eq. (4.40).
The velocity uXYZ represents the fluid velocity with respect to an inertial coordinate system XYZ,
e.g., a coordinate system fixed in space or moving at a constant velocity in a straight line. The
velocity urel is the velocity of the fluid as it crosses the control surface, e.g., urel = ufluid�uCS . The
velocity uXYZ must be measured using the inertial coordinate system XYZ; however, the relative
velocity urel can be measured using any coordinate system since it is a di↵erence of two velocities.

(a) (b)

Figure 4.9. Sketches corresponding to the relative velocity example. (A) Using a coordi-
nate system fixed to the ground. (B) Using a coordinate system fixed to the moving control
surface.

To illustrate this point, consider a fluid flowing in a straight line with velocity uF,XYZ using
the fixed coordinate system XYZ shown in Figure 4.9. Also shown in the figure is a portion of a
control surface, which moves at a speed uCS,XYZ using the same fixed coordinate system. Now let’s
evaluate the linear momentum flow rate term in Eq. (4.40),ˆ

CS
uXYZ (⇢urel · dA) . (4.44)

The velocity uXYZ is the velocity of the fluid at the control surface using our coordinate system.
Hence,

uXYZ = uF,XYZ . (4.45)

The velocity of the fluid at the control surface relative to the control surface is,

urel = ufluid � uCS = uF,XYZ � uCS,XYZ , (4.46)
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where both the fluid and control surface velocities are measured using the XYZ coordinate system,
for convenience. Substituting back into Eq. (4.44) gives,ˆ

CS
uXYZ (⇢urel · dA) =

ˆ
CS

uF,XYZ [⇢(uF,XYZ � uCS,XYZ) · dA] . (4.47)

Now let’s re-evaluate the momentum flow rate term in Eq (4.40) using a coordinate system that

is fixed to the moving control surface, which we’ll call coordinate system xyz (Figure 4.9),ˆ
CS

uxyz (⇢urel · dA) . (4.48)

Note that this coordinate system is still inertial since it’s moving in a straight line at a constant
speed. Using this new coordinate system, the fluid velocity is,

uF,xyz = uF,XYZ � uCS,XYZ , (4.49)

and the control surface velocity is,

uCS,xyz = uCS,XYZ � uCS,XYZ = 0. (4.50)

The control surface doesn’t appear to be moving using this coordinate system. The fluid velocity
relative to the control surface velocity using this new coordinate system is,

urel = ufluid � uCS = uF,xyz � uCS,xyz = (uF,XYZ � uCS,XYZ)� 0, (4.51)

urel = uF,XYZ � uCS,XYZ . (4.52)

Substituting Eqs. (4.49) and (4.52) into Eq. (4.48) gives,ˆ
CS

uxyz (⇢urel · dA) =

ˆ
CS

uF,xyz [⇢(uF,XYZ � uCS,XYZ) · dA] . (4.53)

Note that the relative velocity urel is the same regardless of the coordinate system used (compare
Eqs. (4.46) and (4.52)). However, the value for the fluid velocity at the control surface, uF,XYZ

or uF,xyz does depend on the choice of coordinate system, i.e., uF,XYZ 6= uF,xyz. Furthermore,
this fluid velocity at the control surface can be di↵erent than the relative velocity, in general, i.e.,
uXYZ 6= urel. The only time the two will be the same is if the control surface velocity is zero in
the chosen frame of reference. With this in mind, it’s often most convenient to fix the coordinate
system to the control surface. Several examples are provided in which problems are worked using
a fixed coordinate system or one moving at a constant speed in a straight line. The same answer
is obtained regardless of the choice of coordinate system, but it is almost always easiest to use a
coordinate system fixed to the control surface.

(5) So far we’ve only discussed the LME for inertial (aka non-accelerating) coordinate systems. We
can also apply the LME to non-inertial (aka accelerating) coordinate systems, but we need to add
additional acceleration terms. We’ll consider accelerating coordinate systems later in this chapter.

(6) In order to avoid mistakes when analyzing problems with the LME, be sure to do the following:
(a) Unambiguously draw the control volume that the LME is being applied to.
(b) Clearly indicate the coordinate system that is being used. Identify if the coordinate system is

inertial or non-inertial.
(c) Draw a free body diagram (FBD) of the relevant forces. Include both body and surface forces.
(d) State any significant assumptions that may be used to simplify the LME, e.g., steady state,

incompressible fluid, etc.
(e) Write the significant components of the LME and then indicate the value of each term in the

equation.
(f) Carefully evaluate the velocity terms. This step is where many mistakes are made.
(g) You must integrate the terms in the linear momentum equation when the density or velocity

are not uniform.
(h) Don’t forget to include pressure and shear forces in the surface force term.
(i) Don’t forget to include the weight of everything inside the control volume when gravitational

body forces are significant.
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While these things may seem trivial and unnecessary, writing them down in a clear and concise
manner can greatly reduce the likelihood of mistakes and better communicate your analysis to
others.

(7) Note that the first term on the left-hand side of Eq. (4.40) is the rate of increase of linear momentum
in the CV, which can be re-written as,

d

dt

ˆ
CV

uXYZ⇢dV =
d

dt
(LCV,XYZ) =

dLCV,XYZ

dt
, (4.54)

where LCV,XYZ is the linear momentum contained within the CV with respect to the inertial coor-
dinate system XYZ. Similarly, the second term on the left-hand side of Eq. (4.40), which is the net
rate at which linear momentum leaves the CV through the CS, may be written as,ˆ

CS
uXYZ (⇢urel · dA) =

X

all outlets

L̇XYZ �
X

all inlets

L̇XYZ , (4.55)

where L̇XYZ is the rate at which linear momentum, evaluated using the inertial coordinate system
XYZ, passes through the control surface. Combining Eqs. (4.40), (4.54), and (4.55) gives,

dLCV,XYZ

dt
=

X

all inlets

L̇XYZ �
X

all outlets

L̇XYZ . (4.56)

Let’s consider a few examples to see how LME using an inertial coordinate system is applied.
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A jet of water is deflected by a vane mounted on a cart.  The water jet has an area, A, everywhere and is 
turned an angle q with respect to the horizontal.  The pressure everywhere within the jet is atmospheric.  
The incoming jet velocity with respect to the ground (axes XY) is Vjet.  The cart has mass M.  Determine: 
a. the force components, Fx and Fy, required to hold the cart stationary, 
b. the horizontal force component, Fx, if the cart moves to the right at the constant velocity, Vcart 

(Vcart<Vjet) 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Part (a): 
 
Apply conservation of mass and the linear momentum equation to a control volume surrounding the cart.  
Use an inertial frame of reference fixed to the ground (XY). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First apply conservation of mass to the control volume to determine Vout. 

  (1) rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

q A 

Vjet 

Fx 

Vcart 

Y 
X 

Fy 

q A 

Vjet 

Fx 
Y 

X 

Fy 

Vout (this velocity is currently 
an unknown quantity) 
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where 

  (the mass within the control volume doesn’t change) 

 

(Note that the jet area remains constant.) 
Substitute and re-arrange. 

 

 (2) 
 

Now apply the linear momentum equation in the X-direction: 

 (3) 

where 

  (the momentum within the control volume doesn’t change with time)  

 

  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 
 

 (4) 
 

CV

0d dV
dt

r =ò
! !

( ) ( )

( )

relrel

rel jet out
CS

left side right side

2 2
jet out

1

jet

ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin

cos sin

d V A V A

V A V A

V A

r r r q q q q

r r q q

r r

== ==

=

é ùæ ö
ê úç ÷× = × - + + × +ê úç ÷ç ÷ ê úè ø ë û

= - + +

= - +

ò
uu AA

u A i i i j i j
"###$###% "###$###%

&##'##( &########'########(

&##'##(

outV A

jet out 0V A V Ar r- + =

out jetV V=

rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r =ò

( ) ( )
! ! !

( ) ( ) ( )
relrel

rel jet jet jet jet
CS

left side right side

2
jet j

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
XX uu

Xu d V V A V V A

V A V

r r q r q q q q

r r

=== = == é ùæ ö
ê úç ÷× = × - + + × +ê úç ÷ç ÷ ê úè ø ë û

= - +

ò
uu AA

u A i i i j i j
"###$###% "###$###%"#$#%

&###'###( &##########'###########(

( )

( )

2 2 2
et

1
2
jet

cos cos sin

cos 1

A

V A

q q q

r q
=

+

= -

&##'##(

, 0B XF =

,S X xF F= -

( )2
jet cos 1 xV A Fr q - = -

( )2
jet 1 cosxF V Ar q= -
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Now look at the Y-direction: 

 (5) 

where 

  (the momentum within the control volume doesn’t change with time)  

 

  (assume that the fluid weight in the CV is negligible compared to the cart weight) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 
 

 (6) 
 
  

rel , ,
CV CS

Y Y B Y S Y
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0Y
d u dV
dt

r =ò

( ) ( ) ( ) ( )

( )

rel

rel jet jet
CS

right side

2 2 2
jet

1
2
jet

ˆ ˆ ˆ ˆsin cos sin cos sin

sin cos sin

sin

Yu

Yu d V V A

V A

V A

r q r q q q q

r q q q

r q

== =

=

é ù
ê ú× = + × +ê ú
ê úë û

= +

=

ò
u A

u A i j i j
!"""#"""$ !"""#"""$!"#"$

%""""""""""&""""""""""'

%""&""'

,B YF Mg= -

,S Y yF F=

2
jet sin yV A Mg Fr q = - +

2
jet sinyF V A Mgr q= +
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Part (b): 
 
Apply the linear momentum equation to a control volume surrounding the cart.  Use a frame of reference 
fixed to the cart (xy).  Note that this is an inertial frame of reference since the cart moves in a straight line at 
a constant speed.  In addition, in this frame of reference, the cart appears stationary and the jet velocity at 
the left is equal to Vjet-Vcart.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First apply conservation of mass to the control volume to determine Vout  

 (7) 

where 

  (the mass within the control volume doesn’t change) 

 

(Note that the jet area remains constant.) 
Substitute and re-arrange. 

 

 (8) 
 
Now apply the linear momentum equation in the x-direction: 

 (9) 

where, 

  (the momentum within the control volume doesn’t change with time)  

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

( )
!

( ) ( )

( )

relrel

rel jet cart out
CS

left side right side

2
jet cart out

ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin

cos s

d V V A V A

V V A V A

r r r q q q q

r r q

== == é ùé ù
ê úê ú× = - ×- + + × +ê úê ú
ê úê úë û ë û

= - - + +

ò
uu AA

u A i i i j i j
"###$###% "###$###%"##$##%

&####'####( &########'########(

( )

( )

2

1

jet cart out

in

V V A V A

q

r r
=

= - - +

&##'##(

( )jet cart out 0V V A V Ar r- - + =

out jet cartV V V= -

rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò

q A 

Vjet - Vcart 

Fx 

Fy 

y 
x 

Vout (this velocity is currently 
an unknown quantity) 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 382 2021-12-15



  COLM_07a 

Page 5 of 5 

  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 

 

 (10) 
 

Now solve the problem using an inertial frame of reference fixed to the ground (frame XY).  From Eqn. (8) 
we know that using a frame of reference fixed to the cart, the jet velocity on the right-hand side is: 

 (11) 

Hence, relative to the ground the jet velocity on the right-hand side is: 
  (12) 

Now consider conservation of linear momentum in the X direction. 

 (13) 

where, 

  (the momentum within the control volume doesn’t change with time)  

  (no body forces in the x-direction) 
   (all of the pressure forces cancel out) 

Substitute and re-arrange. 

 

   (Same answer as before!) (14) 
Note that using a frame of reference that is fixed to the control volume is easier than using one fixed to the 
ground.  This is often the case. 

( ) ( ) ( )
!
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relrel

rel jet cart jet cart jet cart jet cart

CS

left side

ˆ ˆ ˆ ˆ ˆ ˆcos cos sin cos sin
x Xu u

xu d V V V V A V V V V Ar r q r q q q q

== = = == éé ù
ê ú

× = - - ×- + - - + × +ê ú
ê ú
ê úë û
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( ) ( )2
jet cart cos 1 xV V A Fr q- - = -
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dt
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A fluid enters a horizontal, circular cross-sectioned, sudden contraction nozzle.  At section 1, which has 
diameter D1, the velocity is uniformly distributed and equal to V1.  The gage pressure at 1 is p1.  The fluid 
exits into the atmosphere at section 2, with diameter D2.  Determine the force in the bolts required to hold 
the contraction in place.  Neglect gravitational effects and assume that the fluid is inviscid. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the X-direction to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

(Note that V2 is unknown for now.) 
 

 

(Note that p2,gage = 0 since p2,abs = patm.  We could have also worked the problem using absolute 
pressures everywhere.  The pressure force on the left hand side would be p1,abspD12/4 and the pressure 
force on the right hand side would be patmpD12/4  (note that the diameter is D1 and not D2).) 

( )rel , ,
CV Cs

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r =ò

( )
! ! ! !rel rel2 2 2 2

2 21 2 1 2
rel 1 1 2 2 1 2

Cs

ˆ ˆ ˆ ˆ
4 4 4 4

X Xu u

X
D D D Du d V V V V V Vp p p p

r r r r r

= =
= == =
æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷× = × - + × = - +
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

ò
A A

u u

u A i i i i

"#$#% "$%

, 0B XF =
2
1

, 1,gage bolts4S X
DF p Fp

= +

atmosphere 

D1 

V1 

D2 

p1 

bolts 

atmosphere 

D1 

V1 

D2 

p1 

bolts 

X 

Fbolts 

The CS cuts through the bolts.  So that Fbolts is the 
force one side of the bolts applies to the other side. 
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Substitute and re-arrange. 

 

 (2) 

 
To determine V2, apply conservation of mass to the same control volume. 

 (3) 

where 

 

 

Substitute and simplify. 

 

 (4) 

 
Substitute Eqn. (4) into Eqn. (2) and simplify. 

 

   (5) 

Note that Fbolts was assumed to be positive when acting in the +X direction (causing compression in the 
bolts).  If Fbolts < 0 then the bolts will be in tension. 
 

 
 
 
 
 
 
 
 
 
 
 

2 2 2
2 21 2 1
1 2 1,gage bolts4 4 4

D D DV V p Fp p p
r r- + = +

2 2 2
2 21 2 1

bolts 1 2 1,gage4 4 4
D D DF V V pp p p

r r= - + -

rel
CV Cs

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò
2 2
1 2

rel 1 2
Cs

4 4
D Dd V Vp p

r r r× = - +ò u A

2 2
1 2

1 2 0
4 4
D DV Vp p

r r- + =

2
1

2 1
2

DV V
D

æ ö
= ç ÷

è ø

42 2 2
2 21 1 2 1

bolts 1 1 1,gage
24 4 4

D D D DF V V p
D

p p p
r r

æ ö
= - + -ç ÷

è ø
22 2

2 1 1 1
bolts 1 1,gage

2
1

4 4
D D DF V p

D
p p

r
é ùæ ö
ê ú= - -ç ÷
ê úè øë û
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Water is sprayed radially outward through 180° as shown in the figure.  The jet sheet is in the horizontal 
plane and has thickness, H.  If the jet volumetric flow rate is Q, determine the resultant horizontal 
anchoring force required to hold the nozzle stationary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the X direction to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

(Note that there is no X-momentum at the control volume inlet.  Also, V is an unknown quantity at the 
moment.) 

 

   (All of the pressure forces cancel and only the anchoring force remains.) 

( )rel , ,
CV CS

X X B X S X
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0X
d u dV
dt

r =ò

( ) ( )

( )

2 2
rel 0

CS 0 0
2

2

sin sin cos

1 1

2

Xu dA

Xu d V V Rd H V RH d V RH

V RH

V RH

q p q p
p

q q

r q r q r q q r q

r

r

= == =

= =

æ ö
ç ÷× = = = -
ç ÷
è ø

= - - -

=

ò ò òu A
!"#"$ !#$

, 0B XF =

,S X xF F=

X 

Fx 

V 

H 

Fx 

side view 

top view 

R 

q V 

Q 

H R 

Q 

Fy 

Y 
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Substitute. 

 (2) 

 
To determine V, apply conservation of mass to the same control volume. 

 (3) 

where 

  (steady flow) 

 

Substitute and simplify. 
 

 (4) 

 
Substitute Eqn. (4) into Eqn. (2). 

 (5) 

 
Note that Fy = 0 due to symmetry. 
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A variable mesh screen produces a linear and axi-symmetric velocity profile as shown in the figure.  The 
static pressure upstream and downstream of the screen are p1 and p2 respectively (and are uniformly 
distributed).  If the flow upstream of the mesh is uniformly distributed and equal to V1, determine the force 
the mesh screen exerts on the fluid.  Assume that the pipe wall does not exert any force on the fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First, note that the linear velocity profile at the outlet may be written as, 

, (1) 

where Vmax is the flow velocity at r = R.  Now apply Conservation of Mass to the fixed control volume 
shown in the figure to find Vmax in terms of the upstream properties, 

, (2) 

where, 

  (steady state), (3) 

 (4) 

Substitute and simplify, 
 (5) 

 (6) 
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Now apply the Linear Momentum Equation in the X-direction to the fixed control volume shown in the 
figure, 

, (7) 

where, 

    (steady state), (8) 

∫ "!($%"#$ ⋅ '()%& = +'(−$+'-.()/00010002
)*+,	./0*
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"36/00000000010000000002
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,  (9) 

= −$+'(-.( + :;
(
<=!"
2" ∫ 81'82

6 , (10) 
= −$+'(-.( + :

>$+'
(-.( = '

>$+'
(-.(  , (11) 

, (12) 

. (13) 
Substitute and simplify, 

'
>$+'

(-.( = −: + ;'-.( − ;(-.(, (14) 
: = (;' − ;()-.( − '

>$+'
(-.( , (15) 

This is the force the mesh applies to the control volume (i.e., the fluid).  The fluid applies an equal and 
opposite force to the mesh. 
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Incompressible fluid of negligible viscosity is pumped, at total volume flow rate Q, through a porous 
surface into the small gap between closely spaced parallel plates as shown.  The fluid has only horizontal 
motion in the gap.  Assume uniform flow across any vertical section.  Obtain an expression for the pressure 
variation as a function of x. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the following differential control volume. 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

 

Substituting and simplifying gives: 

 

 (1) 

 

  or   (2) 
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Now apply the linear momentum equation in the X-direction to the same control volume. 

 

where 

  (steady flow) 

 

(Assume unit depth into the page.  Note that the flux of mass from the porous surface has no X-
momentum.) 

 

 

Substituting and simplifying gives: 

 

   

Substituting Eqns. (1) and (2) gives: 

 

 

 

 

 (3) 
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An incompressible, viscous fluid with density, r, flows past a solid flat plate which has a depth, b, into the 
page.  The flow initially has a uniform velocity U¥, before contacting the plate.  After contact with the plate 
at a distance x downstream from the leading edge, the flow velocity profile is altered due to the no-slip 
condition.  The velocity profile at location x is estimated to have a parabolic shape, u=U¥((2y/d)-(y/d)2), for 
y £ d and u=U¥ for y³d where d is termed the “boundary layer thickness.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Determine the upstream height from the plate, h, of a streamline which has a height, d, at the 

downstream distance x.  Express your answer in terms of d. 
2. Determine the force the plate exerts on the fluid over the distance x.  Express your answer in terms of 

r, U¥, b, and d.  You may assume that the pressure everywhere is p¥.  The force the drag exerts on the 
plate is called the “skin friction” drag.  

 
 
BRIEF SOLUTION: 
 
1. Apply conservation of mass to a control volume that is adjacent to the plate, crosses perpendicularly 

to the stream at the leading edge of the plate, follows a streamline, and crosses perpendicularly to the 
stream at the location where the boundary layer has thickness, d.  Note that there is no flow across a 
streamline. 

2. Apply the linear momentum equation to the same control volume used in Step 1.  Be sure to include 
the force the plate exerts on the control volume.  

x 
u=U¥ 

u=U¥, y³d 

u=U¥((2y/d)-(y/d)2), y£d 
h d 

streamline 

plate has depth, b, 
into the page 

y 
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DETAILED SOLUTION: 
 
Apply conservation of mass to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

 

(Note that there is no flow across the streamline.) 
Substitute into conservation of mass and solve for h. 

 (1) 
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Now apply the linear momentum equation in the x-direction on the same control volume. 

 

where 

  (steady flow) 

 

 
  (the pressure everywhere is p∞) 

Substitute and simplify, making use of Eqn. (1). 
 

 (2) 
 

We could have also determined the force using a different control volume as shown below. 
 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate out of the control volume through the top using conservation of mass. 

 

where 

  (steady flow) 

 

Substitute and solve for the mass flow rate. 
 (3) 
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Now apply the linear momentum equation in the x-direction to the same control volume. 

 

where 

  (steady flow) 

 

(Note that the horizontal component of the velocity at the top is U∞ since it’s outside of the boundary 
layer.) 

 
  (the pressure everywhere is p∞) 

Substitute and simplify making use of Eqn. (3). 
 

  (This is the same answer as before!)  
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Wake surveys are made in the two-dimensional wake behind a cylindrical body which is externally 
supported in a uniform stream of incompressible fluid approaching the cylinder with velocity, U. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The surveys are made at x locations sufficiently far downstream of the body so that the pressure across the 
wake is the same as the ambient pressure in the fluid far from the body.  The surveys indicate that, to a first 
approximation, the velocity in the wake varies with lateral position, y, according to:  

  where   

The quantities A(x) and b(x) are the centerline velocity defect and wake width, respectively, both of which 
vary with position, x.  If the drag on the body per unit distance normal to the plane of the sketch is denoted 
by D and the density of the fluid by r, find the relation for b(x) in terms of A(x), U, r, and D. 
 
 
BRIEF SOLUTION: 
 
1. First apply the linear momentum equation to determine a relation between the various quantities.  

Use a control volume that surrounds the cylinder, crosses the flow perpendicularly far upstream of 
the cylinder where the velocity is uniform (call this cross stream distance, h), crosses the flow 
perpendicularly downstream of the cylinder where the wake width is b(x), and follows streamlines 
between the upstream to downstream locations along the sides of the control volume.  Note that 
there is no flow across a streamline.  Be sure to include the force the cylinder exerts on the control 
volume. 

2. Apply conservation of mass to the same control volume described above to relate the upstream cross 
flow width, h, to the downstream cross flow width, b(x). 
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DETAILED SOLUTION: 
 
Apply linear momentum equation in the x-direction to the control volume shown below.  Use the fixed 
frame of reference indicated in the figure.  Note that there is no flow across a streamline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (steady flow) 

 

  (no body forces in the x direction) 
  (no pressure forces in the x direction) 
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Substitute and simplify. 

 (2) 

 
Now apply conservation of mass to the same control volume. 

 (3) 

where 

  (steady flow) 

 

Substitute and simplify. 

 

 (4) 

 
Substitute Eqn. (4) into Eqn. (2) and solve for b(x). 
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The rectangular control volume shown below could also have used.  Note that there will be some mass flow 
rate through the sides as indicated in the figure below (since the upstream mass flux is larger than the 
downstream mass flux).  The horizontal velocity through the sides will be U everywhere since the 
boundaries are outside the wake. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The linear momentum equation in the x-direction is: 

 (6) 

where 

  (steady flow) 

  

  (no body forces in the x direction) 
  (no pressure forces in the x direction) 

Substitute and simplify. 

 (7) 

 
Now apply conservation of mass to the same control volume. 

 (8) 

where 

  (steady flow) 

( )rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò

( ) ( )
1
2

1
2

rel side
CS

2
2

side2

2

4 2
2

y b

x
y b

u d U Ub u udy m U

Ab bAU m U
U U

r r r

r
p

=+

=-

× = - + +

é ù
= - + +ê ú

ë û

ò òu A !

!

, 0B xF =

,S xF D= -

2
2

side2
4 2

2
Ab bAU m U D
U U

r
p

é ù
- + + = -ê ú
ë û

!

rel
CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

x 

y 

b(x) 
U 

U 

U 

wake 
D 

 sidem!

 sidem!

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 399 2021-12-15



  COLM_04 

Page 5 of 5 

 

Substitute and simplify. 

 

 (9) 

 
Substitute Eqn. (9) into Eqn. (7)and solve for b(x). 

  (This is the same result as before!) (10) 
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A hydraulic jump is a sudden increase in the depth of a liquid stream (which in this case we assume is 
flowing over a horizontal stream bed with atmospheric pressure air everywhere above the liquid): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The depth increases suddenly from h1 to h2 downstream of the jump.  The jump itself is often turbulent and 
involves viscous losses so that the total pressure downstream is less than that of the upstream flow.   
a. Find the ratio of the depths, h2/h1, in terms of the upstream velocity, U1, the depth, h1, and g, the 

acceleration due to gravity.  Assume the flows upstream and downstream have uniform velocity 
parallel to the stream bed and that the shear stress between the liquid and the stream bed is zero.  The 
liquid is incompressible. 

b. What inequality on the value of U12/(gh1) must hold for a hydraulic jump like this to occur? 
 
 
BRIEF SOLUTION: 
 
1. Apply conservation of mass to relate the upstream and downstream depths, h1 and h2, to the 

upstream and downstream velocities, U1 and U2.  Use a control volume that perpendicularly crosses 
the upstream and downstream flows where the velocities are uniform, follows the free surface, and is 
adjacent to the floor. 

2. Apply the linear momentum equation to the same control volume as in Step 2.  Be sure to include the 
pressure forces acting on the upstream and downstream faces.  Note that the pressure increases 
linearly with depth in the fluid. 

 

U1 

U2 h1 

h2 

g 

free surface 
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DETAILED SOLUTION: 
 
First apply conservation of mass to the fixed control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

 

Substitute and simplify. 
 (1) 
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CV CS

0d dV d
dt

r r+ × =ò ò u A

CV

0d dV
dt

r =ò

rel 1 1 2 2
CS

d U h b U h br r r× = - +ò u A

2 2 1 1h U hU=

U1 

U2 h1 

h2 
g 

free surface 

y 
x 

Note:  Since the 
streamlines are parallel at 
the inlet and outlet of the 
CV, the pressure gradient 
normal to the streamlines 
will be hydrostatic. 
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Now apply conservation of linear momentum in the x-direction to the same control volume. 

 

where 

  (steady flow) 

 

 

   

(hydrostatic pressure forces on left and right sides) 
 

Substitute and simplify making use of Eqn. (1).  Solve for the ratio h2/h1. 
 

 

  (using Eqn. (1)) 

  (using Eqn. (1)) 

 

  Þ   

  Þ   

 

We can neglect the negative sign in front of the second term since it is unrealistic. 

 (2) 

 
For the hydraulic jump to occur, we need h2/h1 > 1. 

  Þ   (3) 

The dimensionless parameter in Eqn. (3) is the square of the flow’s Froude number, Fr. 

 (4) 

where Fr < 1 is referred to as subcritical flow, Fr = 1 is critical flow, and Fr > 1 is supercritical flow.  For 
the hydraulic jump to occur, we must have supercritical flow, i.e. Fr > 1. 
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In an attempt to model the speed of a tsunami wave in the deep ocean, consider the propagation of a small 
amplitude, solitary wave front moving with speed, c, from right to left as shown in the figure below.  
Neglect the effects of surface tension.  The liquid is initially at rest but after the wave passes by, the fluid 
behind the wave has a small velocity, dV, in the same direction as the wave.   
 
Derive an expression for the wave speed, c.  You may neglect the shear forces the channel bed and the 
atmosphere exert on the liquid.  Hint:  Consider choosing a steady frame of reference when analyzing the 
problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
BRIEF SOLUTION: 
 
1. Use a frame of reference fixed to the wave so that the flow appears steady. 
2. Apply the linear momentum equation using a control volume that is perpendicular to the upstream 

and downstream flows where the velocities are uniform, along the bottom of the channel, and along 
the free surface.  Be sure to include the pressure forces on the upstream and downstream boundaries.  
Note that the pressure increases linearly with depth from the free surface. 

3. Apply conservation of mass to the same control volume. 

c 

g 
dV 

h 
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DETAILED SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown below.  Use a frame of 
reference that is fixed to the wave.  Since a constant wave velocity is assumed, the frame of reference will 
be inertial. 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

  where   

 

 

Substitute and simplify. 
 

 (1) 
 
Apply conservation of mass to the same control volume. 

 

where 

  (steady flow) 

   

Substitute and simplify. 
 

 (2) 

 
Substitute Eqn. (2) into Eqn. (1) and simplify. 

 

 (3) 
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As an example, consider the speed of a traveling wave in the deep ocean resulting from an undersea 
earthquake for example (the wave amplitude is small compared to its wavelength).  Assuming an ocean 
depth of 1610 m (1 mile), the speed of the wave will be 126 m/s (280 mph)! 
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Two parallel plates of width, 2a, (and unit depth) are separated by a gap of height, h, which changes with 
time.  The upper plate approaches the lower plate at a constant speed, V.  The space between the plates is 
filled with a frictionless, incompressible gas of density, r.  Assume that the velocity is uniform across the 
gap width (y direction) so that u=u(x, t). 

 
Obtain algebraic expressions for: 
a. the velocity distribution, u(x, t). 
b. the pressure distribution in the gap, p(x, t).  The pressure outside of the gap is atmospheric pressure.  

Note:  You do not need to use Bernoulli’s equation to solve this problem. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 

 
 

  

where 

 (1) 

 (2) 

Substitute and simplify. 

 

 

  where f(t) is an unknown function of time (Note:  u = u(x, t).) 

Since the velocity at the center line of the plate is always zero, i.e. u(x = 0, t) = 0, then f(t) = 0. 

  (Note:  h = h(t) Þ u = u(x, t).) (3) 
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Now apply the linear momentum equation in the x-direction to the same control volume using the given 
fixed frame of reference. 

 

where 

 (4) 

 (5) 

 (6) 

 (7) 

 
Substitute and simplify. 

 (8) 

Substitute for u using the expression derived from conservation of mass. 

 (9) 

 

 

 (10) 

The pressure at x = a is patm for all times, i.e.  p(x = a, t) = patm: 

 (11) 

 
Substituting and simplifying gives: 

 

  (Note:  h = h(t) Þ p = p(x, t).) (12) 
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Now let’s work the problem using the control volume shown below. 
 
 
 
 
 
 
 
 
 
Conservation of Mass: 

  

where 

 (13) 

  (Mass flux only through right side due to symmetry.) (14) 

Substitute and simplify. 
 

  This is the same result as before! (15) 

 
Linear Momentum Equation in the x-direction: 

 

where 

 (16) 

(The result from conservation of mass has been used in simplifying the previous expression.) 

  (Momentum flux only through right side due to symmetry.) (17) 

(The result from conservation of mass has been used in simplifying the previous expression.) 
 (18) 

 (19) 

Substitute and simplify. 

 

 (20) 

Since the pressure at x = a is patm, i.e. p(x = a, t) = patm: 

 (21) 

 

  This is the same result as before! (22) 
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Note that since a > x, (p – patm) > 0.  Thus, a downward force must be applied to move the top plate 
downward.  Furthermore, as h decreases, this force increases since (p – patm) increases.  
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A weir discharges into a channel of constant breadth as shown in the figure.  It is observed that a region of 
still water backs up behind the jet to a height a.  The velocity and height of the flow in the channel are 
given as V and h, respectively, and the density of the water is r.  You may assume that friction and the 
horizontal momentum of the fluid falling over the weir are negligible.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is the height a in terms of the other parameters? 
 
 
SOLUTION: 
 
Apply the linear momentum equation in the x-direction to the control volume shown below.  Use the fixed 
frame of reference shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 

  (steady flow) 

  (assume incoming flow has negligible horizontal velocity) 

 

    (net horizontal pressure forces) 
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Assume unit depth into the page. 

Gage pressures are shown acting 
on the control volume. 
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Substitute and simplify. 
 (1) 

 

 

 (2) 

where Fr = V/(gh)1/2 is a dimensionless parameter known as the Froude number. 
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