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9.10. Lift and Drag on Immersed Objects

The force acting on an object immersed in a fluid flow is comprised of the force due to pressure over the
surface and the force due to viscous wall shear stresses (Figure 9.25). If we know the pressure (p) and shear
stress (7) distribution over the object, then,

A

Fsyi:/TjidAni. (9193)
A

where F), is the force due to the pressure component, Fj is the force due to the shear stress component, A is
the surface area of the object, and n; are the unit normal vector components of the differential surface area.
The component of the resultant force acting in the direction parallel to the incoming flow is known as the
drag force, Fp, and the component perpendicular to the incoming flow is known as the lift force, FT,.
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FIGURE 9.25. An illustration of the pressure and shear force distributions over an immersed
object. The resultant lift F, and Fp forces acting on the object are also shown.

Notes:

(1) The pressure force component of the drag is known as the form drag while the shear stress drag
component is known as the skin friction drag.
(2) A streamlined body is one in which the (skin friction drag) > (form drag) (refer to Figure 9.26).

 —— ~ZIIZIZIZZZZI: small wake
FIGURE 9.26. An example of a streamlined body.

A Dbluff body is one in which the (form drag) > (skin friction drag) (refer to Figure 9.27).

FIGURE 9.27. An example of a bluff body.
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(3) The lift and drag are often expressed in dimensionless form as lift and drag coefficients, C, and Cp,

o L D

L =T 5 —_
3PUZA 3PUZA

where A is usually the frontal projected area, i.e., the area seen from the front of the object, for a

bluff body, or the planform area, i.e., the area seen from above, for a streamlined body (Figure 9.28).

To avoid ambiguity, it is best to report what area is used to form the lift and drag coefficients.

and Cp = (9.194)

— s
bluff body streamlined body
(use the frontal projected area) (use the planform area)

FIGURE 9.28. Tllustrations of the frontal projected area (left) and the planform area (right).

9.10.1. Flow around a Sphere at Different Reynolds Numbers

Since flow around spheres is common in practice, it’s worthwhile to examine the flow behavior around a

sphere at different Reynolds numbers,
UsxD
Rep = ——, (9.195)
v
where Uy, is the upstream flow speed, D is the sphere diameter, and v is the fluid’s kinematic viscosity.
Although we’ll specifically look at flow around a sphere, the general patterns shown here are observed for
many other objects too, although the details may be different.

Figure 9.29 shows sketches of different flow regimes as a function of Reynolds number while Figure 9.30
shows corresponding photographs. At the smallest Reynolds number the flow streamlines are symmetric
between the front and back halves of the sphere since fluid inertia is negligible. This regime is known as
the Stokes or creeping flow regime. As the Reynolds number increases, inertia becomes more significant
and a wake with fixed eddies forms downstream of the sphere. At larger Reynolds numbers, the eddies
no longer remain attached behind the sphere and, instead, detach periodically from the sphere and are
carried downstream. This phenomenon is known as a Karmén Vortex Street. Figure 9.31 shows striking
photographs of Karmén vortex streets. At even larger Reynolds numbers the flow structure around the
sphere becomes even more complex. A laminar boundary layer forms on the front half of the sphere and then
separates at an angle of approximately 80° from the leading stagnation point. A laminar wake forms near
the sphere downstream surface, which transitions to turbulence further downstream. At a Reynolds number
of approximately 200,000 the flow undergoes what’s referred to as the drag crisis. At this Reynolds number
the boundary layer transitions from laminar to turbulent on the sphere surface and, thus, separates further
downstream. The form drag on the sphere, which is the primary contributor to the overall drag, decreases as
a result and the drag coefficient drops significantly. This decrease in drag coefficient is discussed further in
the following notes. Reynolds numbers larger than 200,000 result in a nearly fully turbulent boundary layer.

Notes:

(1) The periodic shedding of vortices off an object results in periodic forces exerted on the object in the
spanwise direction. The Tacoma Narrows bridge disaster from 1940 (Figure 9.32) occurred because
a structural natural frequency of the bridge matched the frequency of the shedding vortices, causing
the bridge to resonant and eventually collapse.
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(2) Experimental measurements have shown that the dimensionless frequency of the shedding vortices,
f, expressed as a Strouhal number, i.e., St = fD/V, remains relatively constant at 0.2 for 100 <
Rep < 1 x 10%. The fact that the Strouhal number is insensitive to the Reynolds number over a
wide range of Reynolds numbers has been used to design a type of flow velocity meter known as a
vortex flow meter (Figure 9.34). By measuring the frequency of the forces acting on the obstruction
(of known size) and knowing that the Strouhal number is approximately equal to 0.2, the flow
velocity can be estimated.

(3) The drag coefficient acting on a sphere is shown in Figure 9.35. Commonly-used curve fits for the
drag coefficient are,

24
Rep < 1: Cp = (Stokes’ drag law), (9.196)
ReD
24 3 . .
Rep <5 Cp = 1+ —Rep (Oseen’s approximation), (9.197)
ReD 16
0<Rep <2x10°: Cp= 24+ 0 +0.4 (9.198)
=P © P T Rep | (1+Rep) '
0<Rep<2x10°: Cp =044 (Newton’s Law). (9.199)

The only analytically-derived expression for the drag coefficient is for the Stokes flow regime and
Oseen’s approximation. The remainder of the drag coefficient relations are empirical curve fits.
Note the abrupt decrease in the drag coefficient at the drag crisis, which occurs at a Reynolds
number of 200,000. This is where the boundary layer transitions to turbulence, delaying separation
and decreasing the form drag. The onset of the drag crisis is dependent on the surface roughness
(Figure 9.36). Increasing roughness causes the transition to turbulence to occur sooner and moves
the drag crisis to a smaller Reynolds number. The dimples on a golf ball serve this same purpose.
By decreasing the drag coefficient on the ball, the ball will travel further (and make golf ball
manufacturers more money!).

Notes:
(a) Interestingly, the Reynolds numbers for a 95 mph baseball, a 170 mph golf ball, a 100 mph
cricket ball, and a 140 mph tennis ball are all near the drag crisis.
(4) Drag coefficients for irregular shapes are usually found experimentally or, in some cases, computa-
tionally. Figures 9.37 and 9.38 give drag coeflicients for a variety of objects.
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Estimate the wind force on your hand when you hold it out of your car window while driving 55 mph.
What would the force be if you held your hand out of the window of a jet flying at 550 mph?

SOLUTION:
Model your hand as a rectangular flat plate oriented normal to the flow as shown in the following figure.

Usx H="7in.

—
54V'=4in.

The drag force on your hand (the plate) is,
D = cp3pUZA, (1)
where,
pair = 2.38%1073 slug/ft’,
tair = 3.737%107 slug/(ft.s),
Usx,1 =55 mph = 80.7 ft/s,
U2 =550 mph = 807 ft/s,
A=WH=(4in)(7 in.) =28 in.2=0.19 {t?,
cp.fatplate = 1.2 (obtained from a drag coefficient table for a flat plate),
for H/W=1.75,
Repn = UxDi/v (Reynolds number based on a hydraulic diameter),
Dy=4LW/2(W+H)]=5.1in.=0.42 ft  (hydraulic diameter),
=> Repn,1 =217,000, Repnz = 2,170,000 (these values aren’t used in the calculation other than to
ensure the drag coefficient in the table is in the correct range),
=> |D=1.80 Ibrat 55 mph| and |D = 180 Ibat 550 mph|.

Note that at 550 mph compressibility of the air would be significant and should be included in the drag
calculations. Furthermore, the upstream air density would be smaller than the sea level value since the jet
would be at an elevation higher than sea level. Thus, the drag estimate at 550 mph is questionable.
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A parachute was used during part of the landing sequence to deposit the Spirit rover on the Martian surface. The
parachute had a fully-open, projected diameter of 14.1 m and was designed to slow the landing package (lander and
rover) to a terminal speed of 65 m/s (retro-rockets were used to bring the landing package to a near zero vertical
velocity). If the mass of the landing package was 544 kg, what was the drag coefficient for the parachute? Assume
the gravitational acceleration on Mars is 3.72 m/s? and that the density of the Martian atmosphere near the surface is
0.016 kg/m?.

SOLUTION:

At terminal speed, the weight of the landing package must be balanced by the drag acting on the parachute
(neglecting the drag on the landing package itself),

Y F,=0=D-W, M
where,

D=cyLpria, 2)

W=mg. 3)
Substitute and re-arrange to solve for the drag coefficient,

epLpViA-mg=0 4)

mg
C = —— (5)
P Lpria

Using the given data,

m =544 kg

g =3.72m/s?

o =0.016 kg/m?

Vr =65m/s

A =156.1 m? (=n/4*(14.1 mp?)

= =034
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In the book/movie The Martian, the mission of a crew of
astronauts is derailed by a massive Martian windstorm. If the
Martian atmosphere has a density of 0.016 kg/m? and the wind
speed is 26.8 m/s (= 60 mph), what is the drag force acting on
astronaut Mark Watney? Based on wind tunnel testing, assume
that the drag coefficient multiplied by the frontal projected area
of a typical person is Cp4 = 0.84 m? (see, for example, Table 7.3
in White, F.M., Fluid Mechanics, 7" ed., McGraw-Hill).

What wind speed on Earth would produce an equivalent drag force?

SOLUTION:
The drag force is given by,

D=C, ip, V*A, €))
where,

CpA = 0.84 m? (given),

PMars = 0.016 kg/m3,

V'=26.8 m/s,

=>|D=4.8N (= 1.1 Iby)
Thus, we see that the author took considerable artistic liberty in portraying the damage caused by a Martian
windstorm.

To determine the wind speed on Earth that would cause the same drag force, set the drag forces for Mars
and Earth equal,

2 _ 2
CD%pMarsV A_C V A

1
Mars szEanh Earth™ " ? (2)

’ p ars
VEaxth = VMars N : (3)
p Earth

VEearth = 3.1 m/s (= 6.8 mph),, which corresponds to a light breeze.

Using pearth = 1.23 kg/m?,

C. Wassgren 1000 2021-12-15
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Gravity settling tanks are sometimes used to separate particles from a fluid stream. Estimate the critical
length, L, for capturing a particle by gravity settling in the channel shown below. Express your answer in
terms of the channel height, H, the fluid velocity, U, the fluid density, pr, the fluid dynamic viscosity, L,
particle density, pp, the particle diameter, d, and the acceleration due to gravity, g. You may assume that
the particle diameter is very small and that the fluid velocity profile in the channel is uniform. How will
the length L change if the particle diameter is doubled?

|474.|

______ AR
g I U -
OO i il E T .=

SOLUTION:

In order to capture the particle, we want the particle to settle on the base before passing through the device,
ie.,
tsettling < fresidence
where,
tresidence time = L/U (chamber length / fluid velocity)
tsentling time = H/Upt (settling height / particle terminal velocity)

The particle terminal velocity can be determined by considering a free body diagram acting on the particle.
The forces acting on the particle include a drag force, Fb, a buoyant force, £, and a gravitational force, FG.

Fp 44 Fs Y. F,=0=F,+F,—F,

1 0=32u,U,d+p, Zd'g-p, Zd’g
Fq ¢ ¢
Note that Stokes drag has been assumed for the particle drag force since the particle Reynolds number is
assumed to be very small. Solving the previous equation for the terminal velocity, Uy, gives,
(p.—p,)ed’
T 18y,
Since the settling time must be less than the residence time,

pt

L 18, U

L 18u,H
H (p,-p,)ed

U™ (p,=p;)ed’

The length of the settling chamber, L, will decrease by a factor of four if the particle size doubles.

C. Wassgren 1001 2021-12-15
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A heavy sphere attached to a string will hang at an angle, 0, when immersed in a stream of velocity U as

shown in the figure.

a. Derive an expression for 0 as a function of the sphere and flow properties.

b. What is 0 if the sphere is steel (SG=7.86) of diameter 3 cm and the flow is sea-level standard air at U
=40 m/s? Neglect the string drag.

c. For the same parameters as in part (b), at what velocity will the angle be 45°?

J

Us

— ps, D

SOLUTION:
Draw a free body diagram for the sphere and balance forces in the vertical and horizontal directions.

3 F,=0=Tsin0-W = 7=—— - "8 "

sind sind
1 2 7 32
D _CDEanooZd

ZFYZOZ—TCOSQ+D = T= = (2
’ cosé cosé
Set the tensions equal in Egs. (1) and (2) and simplify.
2 g g2 3
me =CD%'DU°°%d = tanf= me = Pscd’8 3)
sing cosf 3PV epypUL G
tanﬁziL Ps g—;i (4)
3 ¢p pa Uoo

where the drag coefficient, cp, is a function of the Reynolds number based on the sphere diameter, i.e., Req
= Uwxd/ Va.

For the given data,
SG =786 = ps=7860 kg/m’

Uw =40 m/S

d = 0.03m

pa =123 kg/m®
¢ =981 ms

Vo = 1.1¥10° m%/s

= Res=110,000 = cp=0.44

= lo-7#]
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Fig. 8.32 Drag coefficient of a sphere as a function of Reynolds number (Rel. 13).

To find the wind speed corresponding to the given angle, we need to iterate to a solution since the drag
coefficient is a complex function of the flow speed. The following algorithm can be used for iteration.
Note that other algorithms may also be possible.

1. Guess a value for the speed Uss guess.
2. Calculate the Reynolds number, Re = Uxd/ v.
3. Use the plot shown above to determine the drag coefficient, cp.
4. Calculate the speed Usx,alc using a re-arranged Eq. (4) and the given angle,
U = iiﬁ[&) 5)
3cp tanb| p,

5. If Uscalc = Usguess (to within some acceptable tolerance), then stop the iterations because the solution
has been found. If Usw,calc # U guess, then let U guess = Us calc and repeat steps 2 — 5.

C. Wassgren 1093 2021-12-15
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For example, starting with Us,guess = 1.0 m/s.

p, [kg/m’] =
d[m] =

Pa [kg/m;] =
g [m/s’] =
v, [m,/s] =
0 [deg] =

Uint guess [M/S]
1.00
77.21
79.51
80.68
81.36
81.79
82.07
82.26
82.40
82.49
82.55
82.60
82.63
82.65
82.67
82.68
82.69
82.69
82.70

7860
0.03
1.23
9.81

0.000011
45

Re [-]

2727
210578
216841
220025
221890
223065
223837
224357
224715
224964
225138
225261
225348
225410
225453
225485
225507
225523
225534

Co [-]

0.42
0.40
0.39
0.38
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37

Uint catc [M/5]
77.21
79.51
80.68
81.36
81.79
82.07
82.26
82.40
82.49
82.55
82.60
82.63
82.65
82.67
82.68
82.69
82.69
82.70
82.70

Thus, the flow speed for this case is |{Ux= 82.7 m/s|
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A buoyant ball of specific gravity, SG< 1, dropped into water at an impact speed, Vo, penetrates a distance,
h, into the water and pops out again. Assuming a constant drag coefficient, derive an expression for / as a
function of the system properties. How deep will a 5 cm diameter ball with SG=0.5 and Cp= 0.47 penetrate
if it enters water at a speed of 10 m/s? You may neglect splashing, air entrainment, and added mass effects
in your analysis.

ball with diameter, d,
? and specific gravity, SG < 1

L
L

SOLUTION: Fs
Apply Newton’s 2™ Law to the ball: y l
m‘;—I;:FW—FB—FD Foly Fw (1)

where m is the ball mass, y is the depth of the ball from the free surface, Fi is the ball weight, F is the
buoyant force acting on the ball, and Fp is the drag force acting on the ball.

m= Py %d3 2)
F, =mg 3)
F=py id’s @
FD:CD%pFVZ%dZ )

where psand pr are the ball and fluid densities, respectively, d is the ball diameter, g is the acceleration due
to gravity, and Cp is the drag coefficient. Substitute Egs. (2) - (5) into Eq. (1) and simplify.

dv
poid L digp 2=y 5 ©)
d_V: 1_p_F g—gCD&le (7)
dt Ps 4 " psd
dv 1 3011
= oll-—|g-2C,—=1? 8
d ( SG]g 1 °5Gd ®
e -5
av
o) ®
where
1
a=|—-1 10
[SG )g (10)
3011
=ZC. —_ 11
F=3%%6q (1)
C. Wassgren 1005 2021-12-15
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liftdrag_02

Make Eq. (9) dimensionless using a dimensionless velocity and time:

v= [Py
(24

¢ =\Jopt

Substituting Egs. (12) and (13) into Eq. (9) gives:
ci(\ligpﬂJ 2
) ol o
(1) { 1 ]

d—V,’=—(1+V’2)

The initial condition for Eq. (9) is:

V'(¢'=0)=V,
where
v=(2,
a

Solving Eq. (9) using an integration table or a symbolic ODE solver (e.g., MAPLE) gives:

v'=r' dav’ t'=t'
= d !
I -y IO !

'

V'=vy t'=

—tan” (V') +tan”' (V) =¢'
V' =tan [tan'1 ) - t’]

Note that the maximum depth of the ball, 4, occurs when V(¢ ‘= T") = 0.

T'=tan™ (V)

The maximum dimensionless depth of the ball, 2’ (= Sh) is found by integrating Eq. (19) in time.

y'_:[h’ dy' = ITV tan [tan’1 (vy)- t'] dt'

y'=0 t'=0

W= —%ln(l + {tan[tan"l (VO’)—irT']}2 ) +%1n(1 + VO'Z)
=L L+7”

2

2 1+{tan [2 tan”' (VO')]}

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

21

(22)

(23)

(24)

A plot of the dimensionless velocity and position as functions of dimensionless time are shown in Fig. 1

using the data given in the problem statement.

SG =0.5

d =005m
g =9.81m/s?
Cp =047

Vo =10m/s

= a=9.81m/s> and f=14.1m" and Vo’ =11.99

C. Wassgren 1006
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Using the given data, the time at which the ball achieves its maximum depth is:

T'= 149 = (25)

The maximum depth is:
h’=247=h=0.18 (26)

14
—V
: ]
| 12 1 —_y
[}]
T
o 10
>
=
(8]
S 8-
(]
>
B 6-
K
5
.‘7’ 4 .
c
[}]
E 2]
T
O T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

dimensionless time, t'

Figure 1. The dimensionless velocity, 7, and dimensionless position, y’, plotted as a function of
dimensionless time, ¢’, for = 9.81 m/s?, f=14.1 m™!, and Vo’ = 11.99.

In this analysis a constant drag coefficient was assumed. This is a reasonable assumption over the range
1000 < Req < 200,000. A more accurate analysis would take into account the variation in drag coefficient
with speed (and would also require a computational solution). In addition to splashing and air entrainment
effects (air entrained into the wake of the ball), added mass effects should also be taken into account. When
accelerating (or decelerating) an object in a fluid, we must also accelerate (or decelerate) the surrounding
fluid. This extra force required to accelerate the surrounding fluid can be incorporated into the object mass
and is known as an “added mass” or “virtual mass.”

C. Wassgren 1007 2021-12-15
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A barge weighing 8820 kN that is 10 m wide, 30 m long, and 7 m tall has
come free from its tug boat in the Mississippi River. It is in a section of river
that has a current of 1 m/s. In addition, there is a wind blowing straight
upriver at 10 m/s . Assume that the drag coefficient is 1.3 for both the part of
the barge in the wind as well as the part below the water. The drag
coefficients for the water-exposed and air-exposed portions of the barge are
based on the water and air wetted areas, respectively. Determine the speed at
which the barge will be steadily moving. Is it moving upriver or downriver?

SOLUTION:

H-h g water line

- %

L T

s

First determine the wetted areas above and below the waterline. Balancing forces in the vertical direction on the
barge,
F_=0=-W+p,  gLwh, )

vert

where W is the barge weight and the second term on the right hand side is the buoyant force, with / being the draft
of the barge (the depth below the water). Solving for 4 gives,

W
Py ILW

Using the given values,

W= 8820 kN,

pr20 = 1000 kg/m?,

2=9.81 m/s?,

L=30m,

w=10m,

=> h=3.00m.

@

Now determine the wetted areas below and above water,
A =Lw+2Lh+2wh, 3)

wetted,
below

— Lw+2L(H—h)+2w(H-h). )

Using the given values,
Awetted.below = 540 mz,
Awetted,above =620 mz.

Now balance forces in the horizontal direction. These forces include the drag caused by the river and the drag
caused by the wind. Assume that the barge is moving in the same direction as the river (downstream), as shown in
the figure below.

§ Viwind

> Vbarge

Viiver
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2 2
—N= 1 _ — 1
z Fx - 0 - CD,below 2 pHZO (‘/river Vbarge ) Awetted, CD,above 2 pair (Vwind + Vbarge ) Awetted, > (5)
below

above

Solve for Vbarge, noting that the drag coefficients are the same above and below the waterline (given in the problem
statement),

P H,0 (Vriver - Vbarge )2 Ag\/eel:)t‘?vd, =P (Vwind + Vbarge )2 A;A{)eot‘t,zd, > (©)
]/rfver - 2Vriveerarge + Vbzarge = [5&] ;L;‘id (V;ind + 2VwindVbarge + Vbzarge ) > (7N
(1 - C)Vbzarge - Z(Vriver + CVwind )Vbarge_—i_ Vrizver - CV\Azzind =0, ()
17?2 4+ _Z(Vriver + CVwind ) Vo4 (‘/r?ver - CVviind) -0 )
= Vbarge (l—c) barge (l—c) )

5 —x
U, = EENEHC (10)

Using the give data,
Pair = 1.23 kg/m’®,
Viiver = 1 H]/S,
Vwind = 10 m/s,
=> ¢=1.41*103,4=1,B=-2.03 m/s, C = 8.60*10"! m?%/s?
=> Vbarge = 1.43 m/s, 0.601 m/s.

Note that it’s not possible for the barge to move faster than the river’s speed of 1 m/s, so Voarge # 1.43 m/s. Thus, the
correct answer is [Varge = 0.601 m/s (downstream)|.

If we had assumed that Voarge Wwas moving upstream (same direction as Vwind), then Eq. (5) would be,

2 2
2 F X 0= €D pelow %P H,0 (Vriver + Vbarge ) A\bueltted, ~Cp above %P air (Vwind - Vbarge ) A\A]/jetted, > (1)
which would simplify to,
2 2( ]/river + CVwind ) (‘/r?ver - C‘/viincl )

Viarge T (l—c) Viarge (l—c) =0. (12)

Solving this equation gives,
Viarge = -0.601 m/s, -1.43 m/s.

Thus, we see that the original choice of direction for Varge (upstream) was incorrect and the barge is actually moving
downstream. As in the previous discussion, the barge cannot move faster than the river speed so the correct speed is
0.601 m/s.
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Some cars come with a rear “spoiler” (actually an upside-down
airfoil) mounted on the rear of the vehicle that is supposed to
increase the down force on the car and improve traction.

Calculate a typical down force caused by a rear wing used on a
passenger vehicle.

SOLUTION:
The lift force is given by,

L=C ipV*A,

)
where,
A =2 ft?(= 0.186 m?), assuming a span of 4 ft and a chord length of 0.5 ft (note that this is a planform
area),
p=123kg/m’,

V'=24.6 m/s (= 55 mph),
Cr = 1.4, (a typical value based on Fig. 9.17 from Pritchard et al., Introduction to Fluid Mechanics, 8"

ed., Wiley),
1.8 T | T T 1.8 T ¥ | T T
Cp = s R
1.6 \‘ - 1.6 — Cp,,. =150 N\ .
\ A
1.4+ “ — 1.4 — <>\ -
\ \\
\
12 I 12 O
Cp {) Co
1.0 e 1.0 L .
0.8 - 0.8+ g
0,6~ Conventional section 06~ Laminar-flow section
(NACA 23015) (NACA 66,-215)
0.4 a — 0.4 a —
ol el Lg | 55 s \L_g |
0 | | | | | 0 | | | | |
0 4 8 12 16 20 0 4 8 12 16 20

Angle of attack, a (deg) Angle of attack, a (deg)
(a) Lift coefficient vs. angle of attack

=>[L=96.9N (=21.8 Iby)
Thus, we see the spoiler produces very little down force on the vehicle.

To produce a down force of 200 Ibr (= 890 N), the car would need to travel at a speed of 70.7 m/s (= 158
mph).

Note that rear spoilers are sometimes used to direct airflow downward to help reduce the size of the trailing
wake and thus reduce drag.
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9.11. Review Questions

1) What scaling arguments are used in deriving the boundary layer equations?

) What are the appropriate boundary conditions for the boundary layer equations?

) What restrictions are there on the Reynolds number for using the boundary layer equations?

) Describe how the pressure within a boundary layer is determined.

) Describe, in words, the approach used in deriving the Blasius solution to the boundary layer equa-

tions.

(6) What assumptions are made in the Blasius boundary layer solution? (e.g., Reynolds number limi-
tations, pressure gradients, free stream conditions, surface curvature, etc.)

(7) At what Reynolds number (an engineering rule of thumb estimate) does a laminar boundary layer
transition to a turbulent boundary layer?

(8) How does the boundary layer thickness vary with the distance from the leading edge of the boundary
layer for a flat plate, no pressure gradient boundary layer flow?

9) What is the expression for the 99% boundary layer thickness resulting from the Blasius solution?

0) What do the Falkner-Skan boundary layer solutions represent?

1)

2)

(
(2
(3
(4
(5

What are the boundary conditions used in the Falkner-Skan boundary layer solution?
Give two examples of practical boundary layer solutions that are embedded within the Falkner-Skan
general solution.
(13) Can the Kérméan momentum integral equation (KMIE) be used for flows with non-uniform pressure
gradients? Turbulent flows? Compressible flows? Unsteady flows?
4) How might one find the outer flow velocity, U, when using the KMIE?
5) Describe the typical methodology used when applying the KMIE.
6) What is the 1/7th power law profile for a turbulent boundary layer?
7) In which type of boundary layer flow does the shear stress decrease most rapidly? Laminar or
turbulent? In which type of flow does the drag increase most rapidly?
) Give a physical description of why boundary layer separation occurs.
) What defines the point at which boundary layer separation occurs?
) Why can’t the boundary layer equations be used downstream of boundary layer separation point?
) Why do turbulent boundary layers separate further downstream than laminar boundary layers?
22) What is meant by “favorable” and “adverse” pressure gradients?
) Can a boundary layer separate in a favorable pressure gradient flow?
) Must boundary layers always separate in an adverse pressure gradient flow?
) What are the restrictions in using Thwaites’ correlation?
) Describe the flow behavior as a function of Reynolds number for flow over a cylinder.
) Sketch a plot of drag coefficient as a function of Reynolds number for flow over a sphere. Indicate
points of particular interest on the plot. Identify whether the axes are linear or logarithmic.
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FI1GURE 9.29. Drawings of the different regimes of flow around a sphere as a function of
Reynolds number.
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364 = 390

]

1=910 R = 3599

2/

Figure 4.12.1. Streamlines of steady flow (from left to right) past a ciru:ulnr cylinder of
radius a: R = 2aU/v. The photograph at R = o025 (from Prandtl and Tietjens 1934) shows
the movement of solid particles at a free surface, and all the othcrs.(t'rom 'ljancdu 1956a)
show particles illuminated over an interior plane normal to the cylinder axis.

(From Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge University Press.)

FIGURE 9.30. Photographs showing the different regimes of flow around a sphere as a func-
tion of Reynolds number (R). These photographs are from Batchelor, G.K., An Introduction
to Fluid Dynamics, Cambridge University Press.
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Sign

96. Kérmdn vortex street behind a circular
cylinder at R=105. The initially spreading
wake shown opposite develops into the two
parallel rows of staggered vortices that von
Kérmén's inviscid theory shows to be stable
when the ratio of width to streamwise spacing
is 0.28. Streaklines are shown by dectrolytic
precipitation in water. Photograph by Sadatoshi
Taneda

97. Smoke at various levels in a vortex street. A smoke dle), and the irrotational flow below the wake (bottom)
filament in air shows, at a Reynolds number of 100, both Zdravkovich 1969

shear layers (top photographs), only one shear layer (mid-

98, Kérmdn vortices in absolute motion.
Here the camera moves with the vortices
rather than the cylinder. The streamline pat-
tern closely resembles the inviscid one caku-
lated by von Kdrmdn. The flow is visualized by
particles floating on water. Photograph by R.
Wille, from Werlé 1973. Reprodiced, with permis
sion, from the Annual Review of Fluid Mechan-
ics, Volume 5, © 1973 by Annual Reviews Inc

FI1GURE 9.31. Photographs showing Karman vortex streets downstream of an immersed
object. These photos are from Van Dyke, M., An Album of Fluid Motion, Parabolic Press.
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FIGURE 9.32. Photographs of the Tacoma Narrows Bridge prior to failure.
o 04 7

035

st=wp

0.1

L - - .
10 102 10° 10* . s >

Re= VDIV
(Figure from White, F.M., Fluid Mechanics, McGraw-Hill.)
FI1GURE 9.33. The Strouhal number based on the vortex shedding frequency from a cylinder

plotted as a function of the Reynolds number. This figure is from White, F.M., Fluid
Mechanics, McGraw-Hill.
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Fig. 6.33 A vortex flowmeter. (The

Foxboro Company.)

FIGURE 9.34. A photograph of a vortex flow meter.
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Fig. 8.32 Drag coefficient of a sphere as a function of Reynolds number (Rel. 13).

FI1GURE 9.35. The drag coefficient for a sphere based on the sphere’s frontal projected area
plotted against the Reynolds number.
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13 . T
1.0

Size of roughness
0.8 element

CD o § = O

0.6 o = 2X1073

A =4X10°3
04F o =17X10"3

° = 2X1072
0.2 ] | | S L WY Sag S 1

104 3.0 2 4 6 § 1 15 32 3
p = Yod
14

FIGURE 9.36. The drag coefficient on a cylinder plotted as a function of the Reynolds
number for different degrees of surface roughness. Increasing roughness causes the drag
crisis to occur at a smaller Reynolds number.

C. Wassgren 1017 2021-12-15



NOTES ON THERMODYNAMICS, FLUID MECHANICS, AND GAS DYNAMICS

D

Table 7.2 Drag of Two-Dimensional e i ‘ z
Bodies at Re = 10* S < / Up A
Shape Cp based on frontal area  Shape ', based on frontal area
Square cylinder: Half-cylinder: Plate:
_— 8 2.1 —_— G 1.2 pmsal ” 20
Thin plate
o 1.6 — D 1.7 normal to
a wall:
Half tube: Equilateral triangle: i o
. C 1.2 — > Q 1.6
Hexagon:

) R

Rounded nose section:

0 R O——l.o '0.1

05 | 10 | 20 | 40 | 60

- M|

Rounded nose section:

116 | 090 | 070 | o068 | o064

-7 loi Jos | o7 | 12] 20 ] 25| 30] 60
- w2327 21 11 14 13] 09
L
Elliptical cylinder: Laminar Turbulent

L] —— O 1.2 03

£l — 035 0.15
&l — = 0.25 0.1

F1GURE 9.37. Drag coefficients for a variety of two-dimensional objects. This table is from
White, F.M., Fluid Mechanics, 3rd ed., McGraw-Hill.
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Table 7.3 Drag of Three-Dimensional Bodies at Re = 10*

C,, based on
Body frontal area Body C,, based on frontal area
Cube: Cone:
= 107 g | 20 |30 a0 |eor |35 | oo
Cp |030]040] 055] 065 | 0s0] 1.05] 1.15

___,<> on Short cylinder,
laminar flow:
po:lr ]2 |3 Is o J20 Jso |-

L T, Toes| oes| 072|074 | 082|091 098 | 120

Cup: D
gy ) 14 Porous parabolic
dish (23): Porosity: |0 Joa Jo2 o3 Jos |os
oA - =—Cp lia2l133)120] 105] 095] 082
——Cp: | 095]092]090] 086 ] 083 ] 080
Average person:
Disk:
— [l 117 —_— — CpA=9ft? tc,,,\-un:
Parachute "
" Pine and spruce
(Low porosity): wwees [24]: .
ve it 12 2 Ums] 10 | 20 | 30 | 40
2 —t
S Cp |12202 |10202 [07202 [05%02
C,, based on €, based on
Body Ratio frontal area Body Ratio frontal area
Rectangular plate: Flat-faced cylinder:

. l]o. b 1 118 e d 05 115
b 5 12 \ 1 0.90

10 13 2 085

:]" 20 15 4 087

8 099

- 20

Laminar Turbulent

Bllipsoid: )
s d LA 0.75 05 02
1 047 02
I L l_ 2 027 0.13
- 0.25 0.1
8 02 0.08

FI1GURE 9.38. Drag coefficients for a variety of three-dimensional objects. This table is from

White, F.M., Fluid Mechanics, 3rd ed., McGraw-Hill.
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