

Acceleration of a Fluid Particle

$T=T(t, \mathbf{x}(t))$
$\left.\frac{d T}{d t}\right|_{\substack{\text { following a } \\ \text { fluid particle }}}=\frac{\partial T}{\partial t}+\frac{\partial T}{\partial x} \underbrace{\frac{d x}{d t}}_{=u_{x}}+\frac{\partial T}{\partial y} \underbrace{\frac{d y}{d t}}_{=u_{y}}+\frac{\partial T}{\partial z} \underbrace{\frac{d z}{d t}}_{=u_{z}}$

$$
\begin{aligned}
\frac{D T}{D t} & =\frac{\partial T}{\partial t}+u_{x} \frac{\partial T}{\partial x}+u_{y} \frac{\partial T}{\partial y}+u_{z} \frac{\partial T}{\partial z} \\
& =\frac{\partial T}{\partial t}+(\mathbf{u} \cdot \nabla) T
\end{aligned}
$$

$\frac{D \mathbf{u}}{D t}=\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=\frac{\partial \mathbf{u}}{\partial t}+u_{x} \frac{\partial \mathbf{u}}{\partial x}+u_{y} \frac{\partial \mathbf{u}}{\partial y}+u_{z} \frac{\partial \mathbf{u}}{\partial z}$

