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1. Lagrangian and Eulerian Perspectives 
 
There are two common ways to study a moving fluid: 
 

1. Look at a particular location and observe how all the fluid passing that location behaves.  This is 
called the Eulerian point of view. 

2. Look at a particular piece of fluid and observe how it behaves as it moves from location to location.  
This is called the Lagrangian point of view. 

 
Example: 
 
Let’s say we want to study migrating birds.  We could either: 

1. stand in a fixed spot and make measurements 
as birds fly by (Eulerian point of view), or 

 
 
 
 
 

2. tag some of the birds and make measurements  
as they fly along (Lagrangian point of view). 

 
 

Lagrangian (aka Material, Substantial) Derivative 
(Go to http://widget.ecn.purdue.edu/~meapplet for an interactive Java applet on this topic.) 
 
If we follow a piece of fluid (Lagrangian viewpoint), how will some property of that particular piece of 
fluid change with respect to time? 
 
 
 
 
 
 
 
Let’s say we’re interested in looking at the time rate of change of temperature, T, that the particle observes 
as it moves from location to location.  The particle may experience a temperature change because the 
temperature of the entire field of fluid may be changing with respect to time (i.e. the temperature field may 
be unsteady).  In addition, the temperature field may have spatial gradients (different temperatures at 
different locations, i.e. non-uniform) so that as the particle moves from point to point it will experience a 
change in temperature.  Thus, there are two effects that can cause a time rate of change of temperature that 
the particle experiences:  unsteady effects, also known as local or Eulerian effects, and spatial gradient 
effects, also known as convective effects.  We can describe this in mathematical terms by writing the 
temperature of the entire field as a function of time, t, and location, x: 

( ),T T t= x  (3.1) 

Note that the location of the fluid particle is a function of time:  x=x(t) so that 

( )( ),T T t t= x  (3.2) 

Taking the time derivative of the temperature, expanding the location vector into its x, y, and z components, 
and using the chain rule gives: 

! ! !following a
fluid particle

x y zu u u

dT T T dx T dy T dz

dt t x dt y dt z dt
= = =

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.3) 

Note that dx/dt, dy/dt, and dz/dt are the particle velocities ux, uy, and uz respectively.  Writing this in a more 
compact form: 

radio transmitter 

bird 

piece of fluid 

time:    t0 
location:   x(t0) 

time:   t0+δt 
location:  x(t0+δt) 

same piece of fluid 
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( )

x y z

DT T T T T
u u u

Dt t x y z

T
T

t

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

∂
= + ⋅∇

∂
u

 (3.4) 

The notation, D/Dt, indicating a Lagrangian (also sometimes referred to as the material or substantial) 
derivative, has been used in Eqn. (3.4) to indicate that we’re following a particular piece of fluid.  More 
generally, we have: 

( ) ( ) ( ) ( )
convective rate

Lagrangian rate of local or Eulerian of change (changes due to
change (changes as we rate of change (changes a change in
follow a fluid particle) due to unsteady effects)

D

Dt t

∂
= + ⋅∇

∂
u" " "

#$%$& #%&

( ) ( ) ( ) ( )

 particle position)

x y zu u u
t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

#$%$&

" " " "

 (3.5) 

where (⋅⋅⋅) represents any field quantity of interest. 
 
Notes: 
 
1. The Lagrangian derivatives in cylindrical and spherical coordinates are: 

cylindrical: r z

uD
u u

Dt t r r z

θ

θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.6) 

spherical: 
sin

r

uuD
u

Dt t r r r

φθ

θ θ φ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.7) 

 
2. The acceleration experienced by a fluid particle is given by: 

Cartesian: ( ) x y z

D
u u u

Dt t t x y z
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spherical: 

( )

( )

( )

2 2

2

1

sin

1
cot

sin

1
cot

sin

r r r r
r r

r r

r r

uuu u u u
a u u u

t r r r r

uu u u u u
a u u u u

t r r r r

u u u u uu
a u u u u u

t r r r r

φθ
θ φ

φθ θ θ θ θ
θ θ φ

φ φ φ φ φθ
φ φ θ φ

θ θ φ

θ
θ θ φ

θ
θ θ φ

∂ ∂ ∂ ∂
= + + + − +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂

 (3.10) 

 
 

C. Wassgren 52 Last Updated:  25 Aug 2008 
Chapter 03:  Integral Analysis 
 

( )

x y z

DT T T T T
u u u

Dt t x y z

T
T

t

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

∂
= + ⋅∇

∂
u

 (3.4) 

The notation, D/Dt, indicating a Lagrangian (also sometimes referred to as the material or substantial) 
derivative, has been used in Eqn. (3.4) to indicate that we’re following a particular piece of fluid.  More 
generally, we have: 

( ) ( ) ( ) ( )
convective rate

Lagrangian rate of local or Eulerian of change (changes due to
change (changes as we rate of change (changes a change in
follow a fluid particle) due to unsteady effects)

D

Dt t

∂
= + ⋅∇

∂
u" " "

#$%$& #%&

( ) ( ) ( ) ( )

 particle position)

x y zu u u
t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

#$%$&

" " " "

 (3.5) 

where (⋅⋅⋅) represents any field quantity of interest. 
 
Notes: 
 
1. The Lagrangian derivatives in cylindrical and spherical coordinates are: 

cylindrical: r z

uD
u u

Dt t r r z

θ

θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.6) 

spherical: 
sin

r

uuD
u

Dt t r r r

φθ

θ θ φ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.7) 

 
2. The acceleration experienced by a fluid particle is given by: 

Cartesian: ( ) x y z

D
u u u

Dt t t x y z

∂ ∂ ∂ ∂ ∂
= + ⋅∇ = + + +

∂ ∂ ∂ ∂ ∂

u u u u u u
u u  (3.8) 

cylindrical: 

2
r r r r

r r z

r
r z

z z z z
z r z

u uu u u u
a u u

t r r z r

u u u u u u u
a u u

t r r z r

uu u u u
a u u

t r r z

θ θ

θ θ θ θ θ θ
θ

θ

θ

θ

θ

∂ ∂ ∂ ∂
= + + + −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

 (3.9) 

spherical: 

( )

( )

( )

2 2

2

1

sin

1
cot

sin

1
cot

sin

r r r r
r r

r r

r r

uuu u u u
a u u u

t r r r r

uu u u u u
a u u u u

t r r r r

u u u u uu
a u u u u u

t r r r r

φθ
θ φ

φθ θ θ θ θ
θ θ φ

φ φ φ φ φθ
φ φ θ φ

θ θ φ

θ
θ θ φ

θ
θ θ φ

∂ ∂ ∂ ∂
= + + + − +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂

 (3.10) 

 
 

C. Wassgren 52 Last Updated:  25 Aug 2008 
Chapter 03:  Integral Analysis 
 

( )

x y z

DT T T T T
u u u

Dt t x y z

T
T

t

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

∂
= + ⋅∇

∂
u

 (3.4) 

The notation, D/Dt, indicating a Lagrangian (also sometimes referred to as the material or substantial) 
derivative, has been used in Eqn. (3.4) to indicate that we’re following a particular piece of fluid.  More 
generally, we have: 

( ) ( ) ( ) ( )
convective rate

Lagrangian rate of local or Eulerian of change (changes due to
change (changes as we rate of change (changes a change in
follow a fluid particle) due to unsteady effects)

D

Dt t

∂
= + ⋅∇

∂
u" " "

#$%$& #%&

( ) ( ) ( ) ( )

 particle position)

x y zu u u
t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

#$%$&

" " " "

 (3.5) 

where (⋅⋅⋅) represents any field quantity of interest. 
 
Notes: 
 
1. The Lagrangian derivatives in cylindrical and spherical coordinates are: 

cylindrical: r z

uD
u u

Dt t r r z

θ

θ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.6) 

spherical: 
sin

r

uuD
u

Dt t r r r

φθ

θ θ φ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (3.7) 

 
2. The acceleration experienced by a fluid particle is given by: 

Cartesian: ( ) x y z

D
u u u

Dt t t x y z

∂ ∂ ∂ ∂ ∂
= + ⋅∇ = + + +

∂ ∂ ∂ ∂ ∂

u u u u u u
u u  (3.8) 

cylindrical: 

2
r r r r

r r z

r
r z

z z z z
z r z

u uu u u u
a u u

t r r z r

u u u u u u u
a u u

t r r z r

uu u u u
a u u

t r r z

θ θ

θ θ θ θ θ θ
θ

θ

θ

θ

θ

∂ ∂ ∂ ∂
= + + + −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

 (3.9) 

spherical: 

( )

( )

( )

2 2

2

1

sin

1
cot

sin

1
cot

sin

r r r r
r r

r r

r r

uuu u u u
a u u u

t r r r r

uu u u u u
a u u u u

t r r r r

u u u u uu
a u u u u u

t r r r r

φθ
θ φ

φθ θ θ θ θ
θ θ φ

φ φ φ φ φθ
φ φ θ φ

θ θ φ

θ
θ θ φ

θ
θ θ φ

∂ ∂ ∂ ∂
= + + + − +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂

 (3.10) 

 
 


