Dimensional Analysis – Dimensionless Governing Equations

https://en.wikipedia.org/wiki/Mississippi_River_Basin_Model

Dimensional Analysis – Dimensionless Governing Equations

Continuity Equation (conservation of mass) $\nabla \cdot \mathbf{u} = 0$

Navier-Stokes Equations (momentum equations for a Newtonian fluid) $\begin{bmatrix} -2 & -2 \end{bmatrix}$

$$\rho \left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right] = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g}$$

Dimensional Analysis – Dimensionless Governing Equations

Name	Definition	Meaning
Reynolds number, Re	$\frac{\rho VL}{\mu}$	ratio of a characteristic (convective) inertial force to a characteristic viscous force
Froude number, Fr	$\frac{V}{\sqrt{gL}}$	ratio of a characteristic (convective) inertial force to a characteristic gravitational force
Euler number, Eu	$\frac{p}{\rho V^2}$	ratio of a characteristic pressure force to a characteristic (convective) inertial force
Strouhal number, St	$\frac{L}{UT}$	ratio of a characteristic unsteady inertial force to a characteristic convective inertial force
pressure coefficient, <i>c</i> _p	$\frac{p - p_0}{\frac{1}{2}\rho V^2}$	a type of Euler number
drag and lift coefficients, c_D and c_L	$\frac{D}{\frac{1}{2}\rho V^2 A} \text{ or } \frac{L}{\frac{1}{2}\rho V^2 A}$	ratio of drag and lift forces to a characteristic dynamic pressure force (a type of Euler number)
Mach number, Ma	$\frac{V}{c}$	ratio of flow speed to the speed of sound in the flow
relative roughness, <i>e</i> / <i>D</i>	$\frac{e}{D}$	ratio of the pipe wall roughness to the pipe diameter
(Darcy) friction factor, f_D	$\frac{4\tau_w}{\frac{1}{2}\rho\bar{V}^2}$	ratio of the wall shear stress to the dynamic pressure

Common Dimensionless Parameters in Fluid Mechanics

There are many more. Check out:

https://en.wikipedia.org/wiki/Dimensionless numbers in fluid mechanics