
http://www.igert.org/highlights/446/image/1118.html

Dimensional Analysis - Buckingham-Pi Theorem and Method of Repeating Variables

Basic Dimensions

A dimension is a qualitative description of the physical nature of some quantity. A basic dimension is one that is not formed from a combination of other dimensions, i.e., it is an independent quantity. Examples: mass (M), length (L), time (T), temperature (θ)

Buckingham Pi Theorem

$(\#$ of Π terms $)=(\#$ of variables $)-(\#$ of reference dimensions $)$

- $\quad \Pi$ terms are dimensionless terms.
- Reference dimensions are the dimensions required to describe the variables in the equation. These are usually the same as basic dimensions, but in some cases can be different. For example, let A, B, and C be the variables in an equation with the following dimensions,

```
\([A]=M / L^{3}\)
\([B]=M /\left(L^{3} T^{2}\right)\)
\([C]=M T / L^{3}\)
basic dimensions \(=M, L, T \quad(3\) total \()\)
reference dimensions \(=\left(M / L^{3}\right), T \quad(2\) total \()\)
```


The Method of Repeating Variables

1. List all of the independent variables involved in the problem.

- e.g., $y=\mathrm{fcn}_{1}(x, z, t, \ldots)$
- This is the hardest step in a dimensional analysis.

2. Express each variable in terms of basic dimensions.
3. Determine the number of Π terms using the Buckingham-Pi Theorem. (\# of Π terms $)=(\#$ of variables) - (\# of reference dimensions)

- This is a unique number! Everyone should get this same number.

4. Select repeating variables where the number of repeating variables is equal to the number of reference dimensions.

- Choose from the list of independent variables (the right hand side of the equation in Step 1).
- All of the reference dimensions must be represented in the repeating variables.
- This step is not necessarily unique. Different people may select different repeating variables.

5. Form a Π term by multiplying one of the non-repeating variables by the product of the repeating variables, each raised to an exponent that will make the combination dimensionless.

- \quad Since the repeating variables are not necessarily unique, the Π terms are not necessarily unique. Different people may have different Π terms. The number of Π terms will be the same, however, because of the Buckingham-Pi theorem.

6. Double-check that all Π terms are indeed dimensionless.

- This step can catch errors made in Step 5.

7. Express the final form of the dimensional analysis as a relationship among the Π terms.

- e.g., $\Pi_{1}=\mathrm{fcn}_{2}\left(\Pi_{2}, \Pi_{3}, \ldots\right)$
- Note that fcn_{1} in Step 1 and fcn_{2} in Step 7 are different functions, in general. Dimensional analysis won't tell us what these functions are. Other analyses or experiments are required for that.
- The equation in Step 7 in terms of Π terms contains all of the same information as the equation in Step 1 in terms of dimensional variables.

Dimensional Analysis - Buckingham-Pi Theorem and Method of Repeating Variables

Example:
Consider the ballistic equation,
$y=-\frac{1}{2} g t^{2}+\dot{y}_{0} t+y_{0}$.
a. How many dimensionless variables are required to describe this equation?
b. What dimensionless terms can be used to describe this equation?

Dimensional Analysis - Buckingham-Pi Theorem and Method of Repeating Variables

