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2. Continuity Equation (aka COM for a differential CV ) 
 
The continuity equation, which is simply conservation of mass for a differential fluid element or control 
volume, can be derived several different ways.  Two of these methods are given below.  
 
Method 1: 
 

Apply the integral approach to a differential control volume: 
 
 
 
 
 
 
 
 
 
 
 

Assume that the density and velocity are ρ and u, respectively, at the control volume’s center.  The 
mass fluxes through each of the side of the control volume are given by: 
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(where ,centerxm(  is the mass flux in the x-direction at the center of the control volume (Recall 

the Taylor Series approximation discussed in Chapter 01.)) 
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Thus, the net mass flow rate into the control volume is given by: 
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The rate at which mass is increasing within the control volume is given by: 

( )
within CV

m
dxdydz

t t
ρ

∂ ∂
=

∂ ∂
 (4.4) 

where ρ is the density at the center of the control volume.  Note that since the density varies linearly 
within the CV (from the Taylor Series approximation), the average density in the CV is ρ. 
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Conservation of mass states that the rate of increase of mass within the control volume must equal the 
net rate at which mass enters the control volume: 
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Method 2: 
 

Recall that the integral form of COM is given by: 
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