
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

13.6. Adiabatic, Steady, 1D Compressible Flow of a Perfect Gas

Now let’s consider the 1D, steady, adiabatic flow of a compressible gas. Recall that from the Energy Equation
we have,

dh+ V dV = 0. (13.69)

For an ideal gas we can re-write the specific enthalpy in terms of the specific heat at constant pressure, cp,
which is a function of temperature, in general, and the absolute temperature, T ,

dh = cp(T )dT. (13.70)

Substituting,
cp(T )dT + V dV = 0. (13.71)

Integrating along a stream tube, ˆ Tout

Tin

cp(T )dT +
1

2
V 2 = constant. (13.72)

If the gas can be assumed perfect, i.e., cp = constant, then the previous equation becomes,

cpT +
1

2
V 2 = constant, (13.73)

T +
V 2

2cp
= constant . (13.74)

We can re-write this equation in terms of the Mach number,

Ma =
V

c
=

Vp
kRT

=) V 2 = (kRT )Ma2 =) T +
kRTMa2

2cp
= constant. (13.75)

Substituting the following ideal gas relation,

R

cp
=

k � 1

k
, (13.76)

results in,

T

✓
1 +

k � 1

2
Ma2

◆
= constant adiabatic, 1D, steady flow of a perfect gas. (13.77)

If the flow can also be considered internally reversible, making the flow isentropic, then we can use the
isentropic relations for a perfect gas,

p = (constant)T
k

k�1 and ⇢ = (constant)T
1

k�1 , (13.78)

to give,

p

✓
1 +

k � 1

2
Ma2

◆ k
k�1

= constant and ⇢

✓
1 +

k � 1

2
Ma2

◆ 1

k�1

= constant . (13.79)

These relations are for isentropic, 1D, steady flow of a perfect gas.
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A steady flow of air passes through the elbow-nozzle assembly shown.  At the inlet (1), the pipe diameter is 
D1 = 0.1524 m and the air properties are p1 = 871.7 kPa (abs), T1 = 529.0 K, and V1 = 230.4 m/s.  The air is 
expanded through a converging-diverging nozzle discharging into the atmosphere where patm = 101.3 kPa 
(abs).  At the nozzle exit (2), the nozzle diameter is D2 = 0.3221 m and the air properties are T2 = 475.7 K 
and V2 = 400.0 m/s. 
 
 
 
 
 
 
 
 
 
 
a. Is the flow through the elbow-nozzle assembly adiabatic? 
b. Determine the components of the force in the attachment flange required to hold the elbow-nozzle 

assembly in place.  You may neglect the effects of gravity. 
 
 
SOLUTION: 
 
If the flow is adiabatic in going from 1 to 2, then the energy equation will give: 

 (1) 

Using the given data: 
T1 = 529.0 K 
V1 = 230.4 m/s 
cP = 1004 J/(kg×K) 
T2 = 475.7 K 
V2 = 400.0 m/s 

Þ  555.4 K and  555.1 K 

Since the stagnation temperatures are approximately the same, the flow can be considered adiabatic in 
going from 1 to 2. 

 
To determine the force components, apply the linear momentum equation to the control volume shown 
below using the indicated fixed frame of reference. 
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Video solution: https://www.youtube.com/watch?v=NB1hk506Ejc
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where 

  (steady flow) 

 

 

 

Substitute and simplify. 

 

 (2) 

Using the given numerical data: 
r1  =  p1/(RT1) = (871.7 kPa)/[287 J/(kg×K) ×529 K] = 5.738 kg/m3 
V1 =  230.4 m/s 
D1 =  0.1524 m 
p1 =  871.7 kPa (abs) 
patm = 101.3 kPa (abs) 
Þ  Fx  =  -19.60 kN   

Also note that: 

 =  24.11 kg/s (3) 

 
Now consider the y-direction. 

 

where 

  (steady flow) 

 

 

 

 
Substitute and simplify. 

 

 (4) 

Note that from conservation of mass on the same control volume: 

 (5) 

 

( )rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò

( ) ( )
2 2

21 1
rel 1 1 1 1 1

CS 4 4x
D Du d V V Vp p

r r r
æ ö

× = - = -ç ÷
è ø

ò u A

, 0B xF =

( )
2
1

, 1 atm 4S x x
DF p p Fp

= - +

( )
2 2

2 1 1
1 1 1 atm4 4 x

D DV p p Fp p
r- = - +

( )
2 2

2 1 1
1 1 1 atm4 4x

D DF V p pp p
r= - - -

   
!m1 = ρ1V1

πD1
2

4

( )rel , ,
CV CS

y y B y S y
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0y
d u dV
dt

r =ò

( ) ( )
2 2

22 2
rel 2 2 2 2 2

CS 4 4y
D Du d V V Vp p

r r r
æ ö

× = - = -ç ÷
è ø

ò u A

, 0B yF =

( )
2
2

, 2 atm 4S y y
DF p p Fp

= - +

( )
2 2

2 2 2
2 2 2 atm4 4 y

D DV p p Fp p
r- = - +

( )
2 2

2 2 2
2 2 2 atm4 4y

D DF V p pp p
r= - - -

   
!m1 = !m2 = ρ2V2

πD2
2

4

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=NB1hk506Ejc

C. Wassgren 1182 2021-12-15



  comp_33 

Page 3 of 3 

The pressure at point 2 will depend on whether the flow at that point is subsonic or supersonic. 

 (6) 

Using the given data: 
V2 =  400.0 m/s 
g =  1.4 
R =  287 J/(kg×K) 
T2 = 475.7 K 
Þ  c2 = 437.2 m/s  Þ  Ma2 = 0.9148  Þ  The flow at point 2 is subsonic.  Þ  The pressure at point 2 is 
equal to atmospheric pressure, i.e.,  p2 = 101.3 kPa (abs). 
 

Substituting the given numerical data in Eq. (4) gives  Fy  =  -9.644 kN. 
  

2 2
2

2 2

Ma V V
c RTg

= =
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13.7. Stagnation and Sonic Conditions

It’s convenient to choose some useful reference points in the flow where we can evaluate the constants in
Eqs. (13.77) and (13.79). Two such reference points are commonly used in compressible flows: stagnation
conditions and sonic conditions.

Stagnation Conditions: Stagnation conditions are those conditions that would occur if the fluid is brought to
rest (V = 0 =) Ma = 0). These conditions are typically indicated by the subscript “0”. Equations (13.77)
and (13.79) can be written in terms of stagnation conditions as,

T

T0
=

✓
1 +

k � 1

2
Ma2

◆�1

adiabatic, steady, 1D flow of a perfect gas, (13.80)

p

p0
=

✓
1 +

k � 1

2
Ma2

◆ k
1�k

isentropic, steady, 1D flow of a perfect gas, (13.81)

⇢

⇢0
=

✓
1 +

k � 1

2
Ma2

◆ 1

1�k

isentropic, steady, 1D flow of a perfect gas. (13.82)

We can also determine the speed of sound at stagnation conditions using the fact that c =
p
kRT ,

c

c0
=

✓
1 +

k � 1

2
Ma2

◆� 1

2

adiabatic, steady, 1D flow of a perfect gas. (13.83)

These various stagnation ratios are plotted in Figure 13.15 as a function of Mach number for air.

Figure 13.15. Various stagnation ratios, referring to Eqs. (13.80) - (13.83), plotted as a
function of the Mach number. These ratios are for a specific heat ratio of k = 1.4, which
corresponds to air.
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Notes:

(1) Stagnation conditions are also commonly referred to as total conditions, given by the subscript “T”.
(2) Stagnation conditions can be determined even for a moving fluid. The fluid doesn’t necessarily have

to be at rest to state its stagnation conditions. To determine stagnation conditions we only need to
imagine the conditions if the flow is brought to rest.

(3) Equations (13.81) and (13.82) are for a flow brought to rest isentropically. Equations (13.80) and
(13.83) are for a flow brought to rest adiabatically.

(4) Tables listing the values of Eqs. (13.80) - (13.83) for various Mach numbers are typically given in
the back of most textbooks concerning compressible flows.

(5) Note that the stagnation temperature is greater than the flow temperature since when the flow
is decelerated to zero velocity, the macroscopic kinetic energy is converted into internal energy
(microscopic kinetic energy) and, thus, the temperature increases.

(6) The stagnation pressure is a significant property for a flow because it’s directly related to the amount
of work that can be extracted from the flow. For example, imagine bringing a flow to rest so we have
stagnation conditions within the tank shown in Figure 13.16. The larger the stagnation pressure in
the tank, the greater the force we can exert on the piston that can be used to perform useful work.

Figure 13.16. An illustration showing how stagnation pressure is related to the ability to
do work.

Sonic Conditions: Another convenient reference point is where the flow has a Mach number of one (Ma = 1).
Conditions where the Mach number is one are known as sonic conditions and are typically specified using
the superscript “*”.

Equations (13.80) - (13.83) evaluated at sonic conditions are:

T ⇤

T0
=

✓
1 +

k � 1

2

◆�1

adiabatic, steady, 1D flow of a perfect gas, (13.84)

p⇤

p0
=

✓
1 +

k � 1

2

◆ k
1�k

isentropic, steady, 1D flow of a perfect gas, (13.85)

⇢⇤

⇢0
=

✓
1 +

k � 1

2

◆ 1

1�k

isentropic, steady, 1D flow of a perfect gas, (13.86)

c⇤

c0
=

✓
1 +

k � 1

2

◆� 1

2

adiabatic, steady, 1D flow of a perfect gas. (13.87)

Notes:
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(1) For air (k = 1.4), Eqs. (13.84) - (13.87) become,

T ⇤

T0
= 0.8333 adiabatic, steady, 1D flow of air as a perfect gas, (13.88)

p⇤

p0
= 0.5283 isentropic, steady, 1D flow of air as a perfect gas, (13.89)

⇢⇤

⇢0
= 0.6339 isentropic, steady, 1D flow of air as a perfect gas, (13.90)

c⇤

c0
= 0.9129 adiabatic, steady, 1D flow of air as a perfect gas. (13.91)

The p⇤/p0 ratio value is a useful one to memorize since di↵erences in pressure are what drive most
compressible flows.

On the assumption of isentropic flow: In many engineering gas dynamics flows, the assumption that the
entropy of the fluid remains constant (an isentropic process) is a good one. If viscous and heat transfer
e↵ects can be neglected, then we can reasonably assume that the flow is isentropic (isentropic = internally
reversible + adiabatic). This situation is often the case for flows through short, insulated ducts or through
stream tubes not passing through a boundary layer or a shock wave (strong viscous e↵ects occur in both
cases). Experiments have verified that the isentropic assumption under these conditions is reasonable.

13.8. Mollier (aka h-s) Diagrams

Mollier diagrams are diagrams that plot the enthalpy (h) as a function of entropy (s) for a process. They are
often useful in visualizing trends.

Notes:

(1) Sketches of constant pressure and constant volume (or density) curves are shown in Figure 13.17.

Figure 13.17. An example Mollier plot showing isobars (curves of constant pressure) and
isochores (curves of constant specific volume). The curves become steeper as the specific
enthalpy increases. The pressure and specific volume increase as one moves to curves ap-
proaching the upper left of the plot.
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(2) For a perfect gas, curves of constant volume (or density) and constant pressure have slopes given,
respectively, by,

Tds = du+ pdv, (13.92)

Tds =
cv
cp

(cpdT )| {z }
=dh

+pdv, (13.93)

) dh

ds

����
v

= kT, (13.94)

and,

Tds = dh� vdp, (13.95)

) dh

ds

����
p

= T. (13.96)

Thus, larger temperatures (and, thus, larger specific enthalpies) will result in steeper slopes for
curves of constant pressure and constant volume.

(3) From the Energy Equation (refer to Eq. (13.69)), the di↵erence between the flow specific enthalpy
and the stagnation specific enthalpy for an isentropic process is equal to the specific kinetic energy,

h0 = h+
1

2
V 2. (13.97)

Figure 13.18 shows this relationship specifically for an isentropic process, but the relationship holds
for non-isentropic processes too.

Figure 13.18. A Mollier plot showing the di↵erence between the flow specific enthalpy and
specific stagnation enthalpy, in this case for an isentropic process. The di↵erence between
the di↵erent specific enthalpies is equal to the specific kinetic energy in the flow. This
relationship is true even for non-isentropic processes.

(4) For perfect gases, the h-s plots are usually shown as T -s plots since �h = cp�T .
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A pitot tube is used to measure the velocity of air.  At low speeds, we can reasonably treat the air as an 
incompressible fluid; however, at high speeds this assumption is not very good due to compressibility 
effects.  At what Mach number does the incompressibility assumption become inaccurate for engineering 
calculations?  Justify your answer with appropriate calculations.  
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First use the incompressible form of Bernoulli’s equation to determine the incoming velocity. 

 (1) 

 (2) 

 
Now consider the pressure difference for a perfect gas brought to rest isentropically (a reasonable model as 
long as a shock wave does not form in front of the tube). 

 (3) 

where 

 (4) 

Substitute and simplify. 

 

 (5) 

 
Note that for an ideal gas: 

 (6) 

Substitute and simplify. 
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Define the relative error as: 

 (8) 

 
Thus, the error is a function only of the upstream Mach number and the specific heat ratio.  Plotting the 
error as a function of upstream Mach number (for air, g = 1.4) shows that, if we consider <1% error 
acceptable, the incompressibility assumption is valid for Ma∞ <» 0.3. 
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An air blower takes air from the atmosphere (100 kPa (abs) and 293 K) and ingests it through a smooth 
entry duct so that the losses are negligible.  The cross-sectional area of the entry duct just upstream of the 
blower and that of the exit duct are both 0.01 m2. 
 
 
 
 
 
 
 
 
 
 
The pressure ratio, p2/p1, across the blower is 1.05 and the exit pressure is equal to atmospheric pressure.  
The air is assumed to behave isentropically upstream of the blower.  Find: 
a. the velocity of the air entering the blower, and 
b. the mass flow rate of air through the system. 
 
 
SOLUTION: 
 
Apply the First Law between points 0 and 1 (refer to the figure below).  Assume 1D, steady, isentropic (Þ 
adiabatic) flow.  Also neglect potential energy changes since a gas is the working fluid. 
 
 
 
 
 
 
 
 
 
 

 (1) 

The velocity far upstream is negligible (V0 » 0) and .  Substitute and simplify. 

 (2) 
Assume that the air behaves as a perfect gas (Dh = cPDT) and solve for V1. 

 (3) 
 
Express the temperature at point 1 in terms of a pressure ratio making use of the fact that the flow is 
isentropic. 

 (4) 

 
The pressure rise across the blower is specified in the problem statement.  Furthermore, the pressure at 
point 2 is equal to atmospheric pressure, i.e., p2 = p0.  Re-write Eq. (4) using this information. 

 (5) 
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Combine Eqs. (3) and (5). 

 

 (6) 

 
Using the given numerical data: 

cP = 1004.5 J/(kg×K)  (for air) 
g = 1.4  (for air) 
T0 = 293 K 
p2/p1 = 1.05 
Þ V1 = 90 m/s 
 

The mass flow rate can be found from the conditions at point 1: 

 (7) 

where the ideal gas law has been used.  The pressure at point 1 can be found from the blower pressure ratio 
and the fact that p2 is equal to atmospheric pressure. 

 (8) 

The temperature at point 1 can be found using Eq. (5).  Using the given numerical data: 
p0 = 100 kPa (abs) 
p2/p1 = 1.05 
p1 = 95.2 kPa (abs) 
T0 = 293 K 
T1 = 289 K 
R = 287 J/(kg×K)  (for air) 
V1 = 90 m/s 
A1 = 0.01 m2 

Þ  = 1.03 kg/s 
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A force of 500 N pushes a piston of diameter 12 cm through an insulated cylinder containing air at 20 °C.  
The exit diameter is 3 mm and the atmospheric pressure is 1 atm (abs).  Estimate: 
1. the exit velocity, 
2. the velocity near the piston (Vp), and 
3. mass flow rate out of the device. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The pressure at the piston face may be found from the piston force and piston diameter. 

 (1) 

 
Assume the flow through the piston is isentropic.  The velocity at the exit may be found by applying the 
First Law to the air inside the piston with 1 signifying the location adjacent to the piston face and 2 
signifying the device’s exit. 

 (2) 

Assuming perfect gas behavior, adiabatic conditions, and that V2 >> V1 (since the areas are so different):  
 (3) 

 (4) 
Also assume that the flow is isentropic so that: 

 (5) 

Using the given data: 
cP = 1004 J/(kg×K) 
T1 = (20 + 273) K = 293 K 
p1 = 145*103 Pa  (from Eq. (1)) 
p2 = 101*103 Pa  (discharging into the atmosphere, assuming the exit Mach number is subsonic) 
Þ T2  = 264 K 
\V2 = 241 m/s 

Check that the exit Mach number is subsonic. 
  Þ  c2 = 326 m/s (6) 

Since V2 < c2, the exit flow is subsonic and the assumption that p2 = patm is a good one. 
 

From conservation of mass applied to the same control volume: 

 (7) 

\V1 = 0.116 m/s   Clearly the assumption that V2 >> V1 was a good one. 
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The mass flow rate is: 

 (8) 
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A small, solid fuel rocket motor is tested on a horizontal thrust stand at atmospheric conditions.  The 
chamber (essentially a large tank) absolute pressure and temperature are maintained at 4.2 MPa (abs) and 
3333 K, respectively.  The rocket’s converging-diverging nozzle is designed to expand the exhaust gas 
isentropically to an absolute pressure of 69 kPa.  The nozzle exit area is 0.056 m2.  The gas may be treated 
as a perfect gas with a specific heat ratio of 1.2 and an ideal gas constant of 300 J/(kg·K).  Determine, for 
design conditions: 
 
a. the mass flow rate of propellant gas, and 
b. the thrust force exerted on the test stand. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate using the conditions at the exit.  The Mach number at the exit may be found 
from the isentropic stagnation pressure ratio: 

   (1) 

Using pexit = 69e3 Pa (abs), p0 = 4.2e6 Pa (abs), and k = 1.2: 
 (2) 

 
The exit temperature may be found using the stagnation temperature ratio: 

 (3) 

Using T0 = 3333 K, Maexit = 3.136, and k = 1.2: 
 (4) 

 
The exit density may be found using the ideal gas law: 

 (5) 

Using pexit = 69e3 Pa, Texit = 1680 K, and R = 300 J/(kg·K): 
 (6) 

 
The exit velocity may be found using the speed of sound at the exit and the Mach number definition: 

 (7) 

 (8) 

Using k = 1.2, R = 300 J/(kg·K), Texit = 1680 K, and Maexit = 3.136: 
 (9) 

 (10) 

 
The mass flow rate through the nozzle is: 

 (11) 

Using rexit = 0.1369 kg/m3, Vexit = 2439 m/s, and Aexit = 0.056 m2: 

 (12) 
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The thrust force, T, acting on the stand may be determined using the Linear Momentum Equation in the x-
direction for the control volume shown in the figure. 

 (13) 

where, 

  (steady flow) (14) 

 (15) 

 (16) 

 (17) 

Substitute and simplify. 

 (18) 

 (19) 

Using 18.69 kg/s, Vexit = 2439 m/s, pexit = 69e3 Pa (abs), patm = 101e3 Pa (abs), and Aexit = 0.056 m2: 
 (20) 

( )rel , ,
CV CS

x x B x S x
d u dV u d F F
dt

r r+ × = +ò ò u A

CV

0x
d u dV
dt

r =ò

    
ux ρurel ⋅dA( )

CS
∫ = !mVexit

, 0B xF =

( ), exit atm exitS xF T p p A= - -

   
!mVexit = T − pexit − patm( )Aexit
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Air flows isentropically in a converging-diverging nozzle, with exit area of 0.001 m2.  The nozzle is fed 
from a large plenum where the stagnation conditions are 350 K and 1.0 MPa (abs).  The nozzle has a design 
back pressure of 87.5 kPa (abs) but is operating at a back pressure of 50.0 kPa (abs).  Assuming the flow 
within the nozzle is isentropic, determine: 
a. the exit Mach number, and  
b. the mass flow rate through the nozzle. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
The exit Mach number may be found using the isentropic pressure ratio at the exit.  Since the back pressure 
is less than the design pressure (underexpanded conditions), the exit pressure will be equal to the design 
pressure. 

 (1) 

Using pE = 87.5 kPa, p0 = 1.0 MPa, and k = 1.4, the exit Mach number is:  MaE = 2.24. 
 
The mass flow rate through the nozzle may be found using the exit conditions.  First, determine the 
temperature at the exit using the adiabatic stagnation temperature ratio: 

 (2) 

Using T0 = 350 K, k = 1.4, and MaE = 2.24, the exit temperature is:  TE = 174.5 K. 
 
 The speed of sound at the exit is: 

 (3) 
Using k = 1.4, R = 287 J/(kg×K), and TE = 174.5 K, the speed of sound at the exit is:  cE = 264.8 m/s. 
 
The velocity of the air at the exit is: 

 (4) 
Using cE = 264.8 m/s and MaE = 2.24:  VE = 593.8 m/s. 
 
The density at the exit may be found using the ideal gas law: 

 (5) 

With pE = 87.5 kPa, R = 287 J/(kg×K), and TE = 174.5 K:  rE = 1.747 kg/m3. 
 
The mass flow rate through the nozzle is: 

 (6) 

Using the previous data, . 
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Oxygen (not air) enters a device with a cross-sectional area of 1 ft2 (refer to this location as section 1) with 
a stagnation temperature of 1000 °R, stagnation pressure of 100 psia, and Mach number of 0.2.  There is no 
heat transfer, work transfer, or losses as the gas passes through the device and expands to a pressure of 14.7 
psia (section 2). 
a. Determine the density, velocity, and mass flow rate at section 1. 
b. Determine the Mach number, temperature, velocity, density, and area at section 2. 
c. What force does the fluid exert on the device? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
First determine the properties at section 1. 

 (1) 

where 

 (2) 

Using p0 = 100 psia = 14400 lbf/ft2, T0 = 1000 °R, R = 48.291 (ft×lbf)/(lbm×°R) = 1553.7 ft2/(s2×°R), r0 = 
0.298 lbm/ft3.  In addition, with g = 1.395, and Ma1 = 0.2, r1 = 0.292 lbm/ft3. 

 
 (3) 

where, 

 (4) 

Using the given values, T1 = 992.2 °R and V1 = 293.3 ft/s. 
 

 (5) 
Using the given values,  = 85.6 lbm/s. 
 
Now use the isentropic relations to determine the properties at section 2. 

  Þ   (6) 

Using p2 = 14.7 psia and p0 = 100 psia, Ma2 = 1.91. 
 

 (7) 

Using the given data, T2 = 581.2 °R. 
 

 (8) 
Using the given data, V2 = 2144 ft/s. 
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 (9) 

Using the given data, r2 = 0.0754 lbm/ft3. 
 

 (10) 

Using the given data, A2 = 0.53 ft2. 
 

To determine the force the fluid exerts on the device, apply the Linear Momentum Equation in the x-
direction to the control volume shown in the figure, 

 (11) 

where, 

  (steady flow) (12) 

 (13) 

 (14) 
 (15) 

 
Substitute and simplify. 

 

 (16) 
Substitute the given values to find F = -7950 lbf.  Note that this is the force that the device exerts on the 
fluid.  Hence, the force the fluid exerts on the device is 7950 lbf acting in the +x-direction. 
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The Concorde aircraft flies at Ma»2.3 at 11 km standard altitude.  Estimate the temperature in °C at the 
front stagnation point.  At what Mach number would it have a front stagnation point temperature of 450 
°C? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The temperature at the stagnation point is determined using: 

 (1) 

where 
g = 1.4 
Ma∞ = 2.3 
T∞ = 217 K (from standard atmosphere tables at an altitude of 11 km) 
Þ T0 = 447 K = 174 °C 
 

For the next part of the problem, re-arrange Eqn. (1): 

 (2) 

Using the given data: 
g = 1.4 
T∞ = 217 K  
T0 = 450 °C = 723 K 
Þ Ma∞ = 3.4 
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A steady flow of air passes through a converging nozzle.  At the nozzle inlet, the static pressure and 
temperature are p1 = 150 kPa (abs), T1 = 500 K, and V1 = 150 m/s.  At the nozzle exit, p2 = 98.32 kPa (abs), 
T2 = 453.2 K, and V2 = 341.4 m/s.  Assume steady, uniform flow, and that the air behaves as a perfect gas 
with g = 1.4, R = 287 J/(kg×K), and cp = 1005 J/(kg×K). 
a. Is the flow through the nozzle adiabatic? 
b. Is the flow through the nozzle isentropic? 
c. Is the flow through the nozzle frictionless? 
Support all of your answers. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
If the flow is adiabatic then the stagnation temperature will remain constant, i.e., T02 = T01, where: 

 (1) 

Using the given data: 
T1 = 500 K 
V1 = 150 m/s 
T2 = 453.2 K 
V2 = 341.4 m/s 
cp = 1005 J/(kg×K) 
Þ T01 = 511.2 K  and T02 = 511.2 K 

Since the stagnation temperatures are equal, the flow must be adiabatic. 
 
If the flow is isentropic, then the stagnation pressure will remain constant, i.e., p02 = p01 (the stagnation 
density will also remain constant, i.e., r02 = r01). 

 (2) 

Using the given data: 
p1 = 150 kPa (abs) 
V1 = 150 m/s 
T1 = 500 K 

Þ  Ma1 = 0.34    where    

p2 = 98.32 kPa (abs) 
V2 = 341.4 m/s 
T2 = 453.2 K 
Þ  Ma2 = 0.80 
Þ p01 = 162.1 kPa (abs) and p02 = 149.9 kPa (abs) 

Since the stagnation pressures are not equal, the flow is not isentropic. 
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Since the flow is adiabatic but non-isentropic, then some other irreversible process must take place.  Two 
common irreversible processes that occur in gas dynamics are frictional effects and shock waves.  Shock 
waves cannot be the source of the entropy since shock waves only occur in supersonic flows and the flow 
in this converging nozzle remains subsonic throughout.  Hence, we can conclude that 
the flow in this nozzle is not frictionless. 
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A supersonic wind tunnel test section is designed to have a Mach number of 2.5 at a temperature of 60 °F 
and 5 psia.  The fluid is air.   
a. Determine the required inlet stagnation temperature and pressure.   
b. Calculate the required mass flow rate for a test section area of 2.0 ft2. 
 
 
SOLUTION: 
 
The stagnation properties may be found using the isentropic relations: 

 (1) 

 (2) 

where 
pTS = 5 psia = 720 lbf/ft2 
TTS = (60 + 459) °R = 519 °R 
MaTS = 2.5 
gair = 1.4 
\p0 = 85.4 psia and T0 = 1170 °R 
 

The mass flow rate may be found using: 

 (3) 

where the speed of sound in the test section, cTS, is: 
 (4) 

 
Using the given data: 

Rair = 53.3 (ft×lbf)/(lbm×°R) 
ATS = 2 ft2 
Þ cTS = 1120 ft/s 
rTS = 0.0260 lbm/ft3 
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