Compressible Flow - Introduction

https://imgur.com/r/wallpapers/ufMF4X2

Compressible Flow - Introduction

Thermodynamics Review

Some Definitions
$u:=$ specific internal energy
$h:=$ specific enthalpy $=u+p / \rho$
$c_{v}:=$ specific heat at constant volume
$c_{p}:=$ specific heat at constant pressure
$k:=$ specific heat ratio $=c_{p} / c_{v} \quad(k=1.4$ for air $)$
$R:=$ gas constant $\left(R_{\text {air }}=287 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})=53.3(\mathrm{ft} . \mathrm{lb} \mathrm{f}) /((\mathrm{b} \mathrm{m} . \operatorname{degR}))\right.$
adiabatic $:=$ no heat transfer
reversible $:=$ system and surroundings can be restored exactly to their initial states
isentropic := no change in entropy, i.e., $\Delta s=0$
adiabatic and reversible $=>$ isentropic
$T-s$ diagrams are frequently used to illustrate processes
Ideal Gas Relations
$p=\rho R T$ (use absolute pressure and temperature; R is the gas constant, not the universal gas constant))
$u_{2}-u_{1}=\int_{T_{1}}^{T_{2}} c_{v}(T) d T$
$h_{2}-h_{1}=\int_{T_{1}}^{T_{2}} c_{p}(T) d T$
$c_{p}=c_{v}+R$
$c_{p}=\frac{k R}{k-1}$ and $c_{v}=\frac{R}{k-1}$
$d s=c_{v}(T) \frac{d T}{T}-R \frac{d \rho}{\rho}=c_{p}(T) \frac{d T}{T}-R \frac{d p}{p}$

Perfect Gas Relations

perfect gas $=$ ideal gas with constant specific heats
$u_{2}-u_{1}=c_{v}\left(T_{2}-T_{1}\right) \quad\left(c_{v, \text { air }}=718 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})=133(\mathrm{ft} . \mathrm{lbf}) /\left(\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{degR}\right)\right)$
$h_{2}-h_{1}=c_{p}\left(T_{2}-T_{1}\right) \quad\left(c_{p, \text { air }}=1005 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})=187\left(\mathrm{ft}^{2} . \mathrm{lb}_{\mathrm{f}}\right) /\left(\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{degR}\right)\right)$
$s_{2}-s_{1}=c_{v} \ln \frac{T_{2}}{T_{1}}-R \frac{\rho_{2}}{\rho_{1}}=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}}$
isentropic process involving a perfect gas: $\frac{T_{2}}{T_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{k-1}, \frac{p_{2}}{p_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{k}{k-1}}, \frac{p_{2}}{p_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{k}$

Compressible Flow - Introduction

$I^{\text {st }}$ Law for steady flow of a gas with one inlet and one outlet and uniform inlet and outlet properties

From COM: $\dot{m}=\dot{m}_{\text {in }}=\dot{m}_{\text {out }}$. Combining with $1^{\text {st }}$ Law:

$$
\Delta\left(h+\frac{1}{2} V^{2}\right)=q_{\text {into } \mathrm{CV}}+w_{\text {on CV }}
$$

For an adiabatic $\left(q_{\text {into }}=0\right)$ flow with no work other than pressure work $\left(w_{\text {on }}=0\right)$:

$$
\Delta\left(h+\frac{1}{2} V^{2}\right)=0 \text { or } h+\frac{1}{2} V^{2}=\text { constant }
$$

For a perfect gas $\left(\Delta h=c_{p} \Delta T\right)$:

$$
c_{p} T+\frac{1}{2} V^{2}=\text { constant }
$$

