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(1) Equation (13.128) tells us what area we would need to contract to to get sonic conditions (Ma =
1, A = A⇤) given the current Mach number, Ma, and area, A.

(2) We could also interpret Eq. (13.128) as saying, given the area for sonic conditions, A⇤, the Mach
number, Ma, and area, A, are directly related for an isentropic flow. Recall that this relationship
results from Conservation of Mass and the assumption of an isentropic flow.

(3) Values for A/A⇤ as a function of Mach number are typically included in compressible flow tables
found in the appendices of most fluid mechanics textbooks.

(4) What happens if we constrict the area to a value less than A⇤? For a subsonic flow, the new area
information can propagate upstream and downstream and, as a result, the conditions everywhere
change (i.e., the Mach numbers change according to Eq. (13.128) where the new area would be A⇤).
If the upstream flow is supersonic, then some non-isentropic process must occur upstream (a shock
wave) so that the constricted area is no longer less than A⇤.

(5) A plot of Eq. (13.128) is shown in Figure 13.20. Two important features can be observed in the
plot. First, the minimum value of A/A⇤ is equal to one and this minimum occurs at Ma = 1, as
expected. Second, there are two values of Mach number for a given value of A/A⇤ – a subsonic
value and a supersonic value.

Figure 13.20. A plot of the sonic area ratio A/A⇤ as a function of Mach number for k = 1.4.

13.10. Choked Flow

Consider the flow of a compressible fluid from a large reservoir into the surroundings, as shown in Figure 13.21.
Let the pressure of the surroundings, called the back pressure, pB , be controllable.

When pB = p0 there will be no flow from the reservoir since there is no driving pressure gradient. When
the back pressure, pB , is decreased, a pressure wave, i.e., a sound wave, propagates through the fluid in the
nozzle and into the tank (Figure 13.22). Thus, the fluid in the tank “is informed” that the pressure outside
has been lowered and a pressure gradient is established resulting in fluid being pushed out of the tank.
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Figure 13.21. An illustration showing flow from a large tank through a converging nozzle
into the surroundings.

Figure 13.22. An illustration showing sound waves propagating upstream from the sur-
roundings into the tank.

Thus, when pB < p0, the fluid will begin to flow out of the reservoir. Furthermore, as pB/p0 #, Vth ", and
the mass flow rate increases. Note that the flow through the nozzle will be subsonic (Ma < 1) since the
fluid starts from stagnation conditions and doesn’t pass through a minimum area until reaching the throat.
Additionally, since the flow is subsonic, the pressure at the throat will be the same as the back pressure, i.e.,
pth = pB . That this is so can be seen by noting that if pth > pB , then the flow would expand upon leaving
the nozzle and as a result, the jet velocity would decrease and the pressure would increase. Thus, the jet
pressure would diverge from the surrounding pressure. But the jet must eventually reach the surrounding
pressure so the assumption that pth > pB must be incorrect. A similar argument can be made for pth < pB .

As we continue to decrease pB/p0, we’ll eventually reach a state where the velocity at the throat will reach
Ma = 1 (Vth = V ⇤ = c⇤). The pressure ratio at the throat will then be,

pth
p0

=
pB
p0

=
p⇤

p0
=

✓
1 +

k � 1

2

◆ k
1�k

, (13.129)

and the fluid speed will be,

Vth = V ⇤ = c⇤ =
p
kRT ⇤. (13.130)

Any further decrease in pB has no e↵ect on the speed at the throat since the pressure information can no
longer propagate upstream into the reservoir. The fluid speed out of the tank is the same as the speed of
the sound wave into the tank so the pressure information can’t propagate upstream of the throat. Thus, all
flow conditions upstream of the throat will remain unchanged. As a result, we can no longer increase the
mass flow rate from the tank by changing the back pressure. This condition is referred to as choked flow
conditions. The maximum, or choked, mass flow rate will be the same as the mass flow rate at the throat
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where sonic conditions occur,

ṁchoked = ⇢⇤V ⇤A⇤ =
p⇤

RT ⇤V
⇤A⇤, (13.131)

= p⇤
r

k

RT ⇤A
⇤, (13.132)

where Eq. (13.130) has been used. Substituting the following relations,

p⇤ =
p⇤

p0
p0 =

✓
1 +

k � 1

2

◆ k
1�k

p0, (13.133)

T ⇤ =
T ⇤

T0
T0 =

✓
1 +

k � 1

2

◆�1

T0, (13.134)

(13.135)

and simplifying results in,

ṁchoked =

✓
1 +

k � 1

2

◆ 1+k
2(1�k)

p0

r
k

RT0
A⇤ . (13.136)

Notes:

(1) The choked mass flow rate (Eq. (13.136)) is the maximum mass flow rate that can be achieved from
the reservoir.

(2) A quick check to see if the flow will be choked or not for the converging nozzle case is to check if
the back pressure is less than or equal to the sonic pressure, i.e.,

If
pB
p0

 p⇤

p0
=

✓
1 +

k � 1

2

◆ k
1�k

, then the flow will be choked and
pth
p0

=
p⇤

p0
. (13.137)

Note that the criterion for checking for choked flow in a converging-diverging nozzle is di↵erent, as is
discussed in Section 13.18. The key concept to keep in mind is, if the flow anywhere in the channel
is equal to or greater than the speed of sound, then sound waves cannot propagate upstream into
the reservoir.

(3) What happens outside of the nozzle if the back pressure is less than the sonic pressure? In that
case the flow must eventually adjust to the surrounding pressure. It does so by expanding in a two-
dimensional process known as an expansion fan, a topic addressed in Section 13.24 (Figure 13.23).

Figure 13.23. Illustration and photograph showing an expansion fan downstream of the
exit of a converging nozzle. For this case, the back pressure is less than the sonic pressure
and, thus, the flow rapidly expands from sonic conditions at the throat to the surrounding
(lower) back pressure after leaving the nozzle.
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Figure 13.24. Plots showing how mass flow rate in a converging nozzle varies with the back
pressure to stagnation pressure ratio (upper left), throat pressure ratio varies with the back
pressure ratio (upper right), and pressure ratio within the nozzle to the position (bottom).

(4) The previously described processes are sketched in the plots shown in Figure 13.24. The upper left
plot shows that, as the back pressure ratio decreases from one, the mass flow rate decreases until
the back pressure reaches sonic conditions. At this point the mass flow rate equals, and remains, at
the choked mass flow rate since further decreases in back pressure can’t propagate upstream of the
throat, where the Mach number equals one.

The upper right plot shows that the pressure at the throat equals the back pressure as the back
pressure decreases (since the flow at the nozzle exit is subsonic) until the back pressure reaches the
sonic pressure. At this point the Mach number at the nozzle exit equals one. Further decreases in
the back pressure no longer change the conditions at or upstream of the throat since the pressure
information can’t propagate upstream of where the Mach number equals one (at the throat).

The bottom plot shows the pressure profile within the (converging) nozzle. As the back pressure
decreases, the pressure decreases moving toward the throat since for a subsonic flow, a decreasing
area results in an increasing speed and, from Bernoulli’s equation, a decreasing pressure. At the
nozzle exit the exit pressure equals the back pressure when the exit flow is subsonic. When the
back pressure is equal to the sonic pressure, the pressure at the nozzle exit is also equal to the sonic
pressure and the flow becomes choked. Further decreases in the back pressure aren’t propagated
upstream of the throat (where the Mach number is one) and, thus, the flow in the converging section
remains unchanged. However, once the flow leaves the nozzle exit, it must expand in order to come
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into equilibrium with the smaller back pressure. It does so through a phenomenon known as an
expansion fan, which is a topic covered in Section 13.24.
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A CO2 cartridge is used to propel a small rocket cart.  Compressed CO2, stored at a pressure of 41.2 MPa 
(abs) and a temperature of 20 °C, is expanded through a smoothly contoured converging nozzle with a 
throat area of 0.13 cm2.  Assume that the cartridge is well insulated and that the pressure surrounding the 
cartridge is 101 kPa (abs).  For the given conditions, 
a. Calculate the pressure at the nozzle throat.   
b. Evaluate the mass flow rate of carbon dioxide through the nozzle.   
c. Determine the force, F, required to hold the cart stationary. 
d. Sketch the process on a T-s diagram. 
e. For what range of cartridge pressures will the flow through the nozzle be choked? 
f. Will the mass flow rate from the cartridge remain constant for the range of cartridge pressures you 

found in part (e)?  Explain your answer. 
g. Write down (but do not solve) the differential equations describing how the pressure within the tank 

varies with time while the flow is choked. 
 
Note:  For CO2, the ideal gas constant is 189 J/(kg-K) and the specific heat ratio is 1.30. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First check to see if the flow is choked upon leaving the cartridge. 

 (1) 

Since 

  Þ  The flow is choked! (2) 

Because the flow is choked, the throat (exit) pressure will be the sonic pressure: 
 (3) 

 (4) 
 

The mass flow rate will be the choked flow mass flow rate: 

 (5) 

 (6) 
where 

g = 1.3 
p0 = 41.2 MPa 
R = 189 J/(kg×K) 
T0 = 20 °C = 293 K 
A* = 0.13 cm2 = 1.3*10-5 m2 (The throat area is the sonic area since the flow is choked there.) 
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Video solution: https://www.youtube.com/watch?v=yCge25EldjY
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The force required to hold the cart stationary may be found using the linear momentum equation in the x-
direction applied to the control volume shown below using a fixed frame of reference.   
 
 
 
 
 
 
 
  

 
 

 (7) 

where 

  (The CV is stationary so the fluid essentially has zero velocity in the CV.) (8) 

 (9) 

  (No gravity in the X-direction.) (10) 

  (Need to include pressure forces in the surface force balance.) (11) 
Substitute and simplify. 

 (12) 

 (13) 
 (14) 

where 
 = 1.52 kg/s (from part b) 

pE = 22.5*106 Pa (from part a) 
patm = 101*103 Pa 
AE = 0.13 cm2 = 1.3*10-5 m2 

and 
  (using g = 1.3, R = 189 J/(kg×K), and (15) 

 (16) 

 
The T-s diagram for the process is: 
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The flow will be choked when the back pressure is less than or equal to the sonic pressure: 

  (using g = 1.3) (17) 

  (using pback = 101 kPa) (18) 
 

The mass flow rate from the cartridge will not, in general, be constant since the choked flow mass flow rate 
depends both on the stagnation pressure and stagnation temperature, i.e. 

 (19) 

The stagnation pressure and temperature in the cartridge will vary in time (as shown below). 
 

From conservation of mass on the previously shown control volume: 

 (20) 

 
From conservation of energy on the same control volume: 

  (the cartridge is insulated so there is no heat transfer) (21) 

where perfect gas behavior has been assumed and 

 (22) 

 (23) 
 
Equations (19) - (23) present a coupled set of ordinary differential equations which would be solved 
numerically subject to the initial conditions: 

T0(t = 0) = 293 K (24) 
M0(t = 0) = r0V0 = p0V0/(RT0) (25) 
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Air flows isentropically through a converging nozzle.  At a section where the nozzle area is 0.013 ft2, the 

local pressure, temperature, and Mach number are 60 psia, 40 °F, and 0.52, respectively.  The back pressure 

is 30 psia.  Determine: 

a. the Mach number at the throat, 

b. the mass flow rate, and  

c. the throat area. 

 
 

SOLUTION: 

 

 

 

 

 

 

 

 

 
First determine if the flow is choked by checking the pressure ratio at the exit. 

  Þ  p0 = 72.15 psia (1) 

using p = 60 psia, g = 1.4, and Ma = 0.52. 

 

  Þ  The flow is choked! (2) 

 

Since the flow is choked, MaT = 1 and the throat area will equal the sonic area: 

  Þ  AT = A* = 9.97*10-3 ft2 (3) 

where A = 0.013 ft2, g = 1.4, and Ma = 0.52. 

 

The mass flow rate will be the choked mass flow rate: 

  Þ   lbm/s (4) 

where g = 1.4, R = 53.3 (lbf×ft)/(lbm×°R), p0 = 72.15 psia = 1.04*104 lbf/ft2, A* = 9.97*10-3 ft2 and 

  Þ  T0 = 527 °R  (Ma = 0.52 and T = 500 °R) (5) 
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In wind-tunnel testing near Ma = 1, a small area decrease caused by model blockage can be important.  
Suppose the test section area is 1 m2, with unblocked test conditions Ma = 1.10 and T = 20 °C.   
a. What model area will first cause the test section to choke?   
b. If the model cross section is 0.004 m2 (0.4 % blockage), what percentage change in test section 

velocity results? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
First determine the area when the test section will choke.  This area will be the sonic area. 

 (1) 

Using ATS = 1 m2, Ma = 1.10, and gair = 1.4, A* = 0.992 m2.  Thus, the model area that will cause the test 
section to choke is Amodel = ATS – A* = (1 – 0.992) m2 = 0.008 m2. 
 
Using Eqn. (1) with A = (1 – 0.004) m2 = 0.996 m2 and A* = 0.992 m2, the Mach number in the test section 
with the blockage is Ma = 1.07.   
 
The velocity corresponding to a given Mach number is given by: 

 (2) 

where the local temperature is found using: 

 (3) 

 
The percent change in the test section velocity is: 

  

 (4) 

Using Maw/ blockage = 1.07, Maw/o blockage = 1.10, and gair = 1.4, % change = -2.2%. 
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A tank having a volume of 100 ft3 is initially filled with air at 100 psia and 140 °F.  Suddenly the air is 
allowed to escape to the atmosphere (14.7 psia) through a frictionless converging nozzle of 1 in. diameter.  
The tank is to be considered as insulated perfectly against heat conduction and as having no heat capacity.  
Plot the pressure in the tank as a function of time. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
First determine the range of tank stagnation pressures that will result in choked flow from the tank. 

For , the flow will be choked. (1) 

With pB = 14.7 psia, the flow will be choked when p0 ≥ 27.8 psia.  Thus, the flow from the tank is initially 
choked. 
 
The rate of change of mass within the tank can be found from conservation of mass applied to the control 
volume shown in the figure. 

 

Þ  (2) 

where  is the mass flow rate leaving the tank. 
 
The mass flow rate for a choked flow is given by: 

 (3) 

where the pressure p0 and T0 are the pressure and temperature inside the tank and A* is the area of the 
nozzle exit area (for choked flow conditions, the nozzle exit area is the sonic area).  Note that the derivation 
for Eq. (3) assumes 1D, steady flow.  In this problem we’ll assume that the steady form of the isentropic 
flow relations can be used; however, unsteady effects will still be retained for determining the time rate of 
change of properties within the tank.  The pressure within the tank can be related to the temperature and 
mass within the tank using the ideal gas law. 

 (4) 

Hence, Eqn. (3) becomes: 

 (5) 
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When the flow is unchoked, the mass flow rate can be found from the conditions at the nozzle exit. 

 

 (6) 

 
The Mach number at the exit can be found by combining Eq. (4) with: 

  where pE = pB since the exit flow is subsonic (7) 

to get: 

 (8) 

 
To determine the temperature in the tank, apply conservation of energy to the control volume shown in the 
figure. 

 

Þ    (where u = cVT is the specific internal energy) 

  (where h0,E = cPTE + ½VE2)  

  (using Eqn. (2)) 

  (using gR = (g-1)cP) 

 

 

 (9) 

 

   

!m = ρEVE AE =
ρE
ρ0

⎛

⎝⎜
⎞

⎠⎟
ρ0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ma E γ RT0
TE
T0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

AE

= 1+ γ −1
2

Ma E
2⎛

⎝⎜
⎞
⎠⎟

1
1−γ

ρ0Ma E γ RT0 1+ γ −1
2

Ma E
2⎛

⎝⎜
⎞
⎠⎟

− 1
2

AE

   
!m = 1+ γ −1

2
Ma E

2⎛
⎝⎜

⎞
⎠⎟

1+γ
2 1−γ( ) M tank

Vtank

⎛

⎝⎜
⎞

⎠⎟
Ma E γ RT0 AE

1
2

0

11 Ma
2

E
E

p
p

g
gg --æ ö= +ç ÷

è ø

1

tank
0

tank

2Ma 1
1

B
E

p
M RT
V

g
g

g

-é ùæ öê úç ÷ê úç ÷= -ê ú- ç ÷ê úç ÷ê úè øë û

    

d
dt

eρ dV
CV
∫ + h0 ρurel ⋅dA( )

CS
∫ = !Qinto

CV
+ !Won

CV

   
d
dt

uM( )tank
+ !mh0,E = 0

   
M tankcV

dT0
dt

+ cVT0
dM tank

dt
+ !m cPTE + 1

2VE
2( ) = 0

   

dT0
dt

−
!m

M tank
T0 +

!m
M tank

γ TE + 1
2cV

γ RTEMa E
2( ) = 0

   

dT0
dt

−
!m

M tank
T0 +

!m
M tank

γ TE + γ −1( )cP
2cV

TEMa E
2⎡

⎣⎢
⎤
⎦⎥
= 0

   

dT0
dt

−
!m

M tank
T0 +

!m
M tank

γ TE 1+ γ −1
2

Ma E
2⎡

⎣
⎢

⎤

⎦
⎥ = 0

   

dT0
dt

−
!m

M tank
T0 +

!m
M tank

γ T0 = 0

   

dT0
dt

+
!m

M tank
γ −1( )T0 = 0

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1223 2021-12-15



  isentropic1D_09 

Page 3 of 4 

To solve for the tank pressure (p0) as a function of time, use the following algorithm. 
1. Determine the mass flow rate at time step n. 

a. If p0 ≥ 27.8 psia: 

 (10) 

b. If p0 < 27.8 psia: 

 (11) 

where 

 (12) 

 
 

2. Determine the change in the tank temperature. 

  (this is a simple Euler integration scheme) (13) 

where Dt is the time step (assumed sufficiently small for stability and accuracy) and 

 (14) 

 
3. Determine the new mass within the tank. 

 (15) 

where 

 (16) 

and  is the mass flow rate found in step 1. 

 
4. Determine the new pressure in the tank. 

 (17) 

 
5. Repeat the steps 1-5 until the tank pressure equals the back pressure, i.e., p0 = pB. 
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Use the following given data: 

p0(t = 0) = 100 psia 
T0(t = 0) = 140 °F = 500 °R 
V  = 100 ft3 
AE  = 5.45e-3 ft2 
pB  = 14.7 psia 
gair  = 1.4 
Rair  = 53.3 (lbf×ft)/(lbm×°R) 
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The large compressed-air tank shown in the figure exhausts from a nozzle at an exit velocity of Ve = 235 
m/s.  Assuming isentropic flow, compute: 
a. the pressure in the tank  
b. the exit Mach number 
c. Now consider a case where the exit velocity is not given and the tank pressure is 300 kPa (abs). For 

these conditions, determine the exit flow speed, VE. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the exit Mach number using: 

 (1) 

The exit speed of sound, assuming ideal gas behavior, is given by: 
 (2) 

where, for an adiabatic flow: 

 (3) 

Using the given data: 
g = 1.4 
R = 287 J/(kg×K) 
T0 = 30 °C = 303 K 
Ve = 235 m/s 
cp = 1005 J/(kg×K) 
Þ Te  = 276 K 
Þ ce  = 333 m/s 
Þ Mae  = 0.71 
 

Since the exit Mach number is subsonic, the exit pressure will be equal to the back pressure, i.e. 
pe = patm = 101 kPa (abs) 
 

Assuming isentropic flow: 

 (4) 

Using the given data: 
Þ p0  = 141 kPa (abs) 
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Now consider the case where the exit velocity is not given, but the tank pressure is given as p0 = 300 kPa 
(abs).  First determine whether or not the flow is choked.  For a converging nozzle, the flow is choked if, 

 (5) 

Using the given data (p0 = 300 kPa (abs) and pB = 101 kPa (abs)), pB/p0 = 0.3367.  Thus, the flow is choked 
for the given conditions and MaE = 1. 
 
Since the exit is at sonic conditions, the speed of the flow there is, 

 (6) 

where 

 (7) 

Using the given data (T0 = 303 K, k = 1.4, R = 287 J/(kg.K)), T* = 253 K, and VE = 319 m/s. 
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Air flows isentropically through a converging nozzle.  At a section where the nozzle area is 0.013 ft2, the 
local pressure, temperature, and Mach number are 60 psia, 40 °F, and 0.52, respectively.  The back pressure 
is 30 psia.  The Mach number at the exit, the mass flow rate, and the exit area are to be determined. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First determine whether or not the flow is choked by checking the pressure ratio at the exit.  In order to do 
this, we must first determine the flow stagnation pressure (we’ll also calculate the stagnation pressure while 
we’re at it).  Note that the flow remains subsonic in the nozzle (subsonic Mach number and no minimum 
area) so that there will be no shock waves in the flow to modify the flow’s stagnation pressure. 

 (1) 

 (2) 

Using the given data: 
p1 = 60 psia 
T1 = 500 °R 
g = 1.4 
Ma1 = 0.52 
Þ p0 = 72.2 psia 
Þ T0 = 527 °R 

 
From the ideal gas law: 

  (where R = 53.3 (ft×lbf)/(lbm×°R) = 1716 ft2/(s2×°R)) (3) 

Þ r0 = 1.21*10-3 slug/ft3 
 
 

Now check to see if pb/p0 < p*/p0. 

   (4) 

Þ  The flow must be sonic at the exit, i.e., Mae = 1! 
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Since the flow is sonic at the exit, we know that the exit area must be the sonic area. 

 (5) 

Using the given data: 
g = 1.4 
A1 = 0.013 ft2 
Ma1 = 0.52 

 Þ  Ae = 9.97*10-3 ft2 

 
Since the flow is choked, the mass flow rate is: 

 (6) 

g = 1.4 
R  =  53.3 (ft×lbf)/(lbm×°R) = 1716 ft2/(s2×°R) 
Ae = 9.97*10-3 ft2 ( = A*) 
p0 = 72.2 psia 
T0 = 527 °R 
Þ   

 
We could have also found the mass flow rate using: 

  
where 
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A fixed amount of gaseous fuel is to be fed steadily from a heated tank to the atmosphere through a 
converging nozzle.  The temperature of fuel in the tank remains constant.  A young engineer comes to you 
with the following scheme:  “Pressurize the tank to a pressure considerably higher than atmospheric 
pressure.  At the fuel nozzle outlet, the Mach number will then be equal to one.  As long as the Mach 
number is one at the nozzle outlet, we will have the same mass flow rate.”  Do you agree with the young 
engineer?  Explain your answer. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
If p0 >> patm, then the flow will be choked at the nozzle exit.  Although the Mach number at the exit plane 
will remain sonic (i.e., MaE = 1) while the flow is choked, the mass flow rate will not remain constant since 
the stagnation pressure within the tank will decrease as mass leaves the tank.  Over time, the mass flow rate 
from the tank will decrease. 

 (1) 

In this expression, A* is the throat area (while the flow is choked) and T0 remains constant, as given in the 
problem statement.  However, the stagnation pressure decreases since, 

. (2) 

From Conservation of Mass applied to the tank, 

 (3) 

Thus, as mass escapes from the tank, the tank mass decreases (Eq. (3)) and, from Eq. (2), the stagnation 
pressure decreases.  Thus, from Eq. (1), the mass flow rate decreases. 
 

   
!mchoked = 1+ γ −1

2
⎛
⎝⎜

⎞
⎠⎟

γ +1
2 1−γ( )

p0
γ

RT0

A*

tank
0 0 0 0

tank

M
p RT RT

V
r

æ ö
= = ç ÷

è ø

   

dM tank
dt

= − !m

p0, T0 patm 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=_i37nWljLb0

C. Wassgren 1230 2021-12-15



  isentropic1D_22 

Page 1 of 1 
 

A large tank contains 0.7 MPa (abs), 27 °C air.  The tank feeds a converging-diverging nozzle with a throat area of 
6.45*10-4 m2.  At a particular point in the nozzle, the Mach number is 2. 
 
a. What is the area at that point? 
b. What is the mass flow rate at that point? 
 
 
SOLUTION: 
 
Use the isentropic relations to determine the downstream Mach number. 

  Þ  A = 1.09*10-3 m2 (1) 

where k = 1.4, Ma = 2, and A* = 6.45*10-4 m2 (the throat must be at sonic conditions since the flow goes from 
stagnation conditions to supersonic conditions). 
 
Since the flow is sonic at the throat, the mass flow rate is choked: 

  Þ  1.05 kg/s (2) 

where R = 287 J/(kg.K). 
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A large tank supplies helium through a converging-diverging nozzle to the atmosphere.  Pressure in the 
tank remains constant at 8.00 MPa (abs) and temperature remains constant at 1000 K.  There are no shock 
waves in the nozzle.  The nozzle is designed to discharge at an exit Mach number of 3.5.  The exit area of 
the nozzle is 100 mm2.  Note that for helium the specific heat ratio is 1.66 and the ideal gas constant is 
2077 J/(kg×K).  
 
a. Determine the pressure at the exit of the converging/diverging nozzle.  
b. Determine the mass flow rate through the device. 
c. Sketch the flow process from the tank through the converging/diverging nozzle to the exit on a T-s 

diagram. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 

  Þ  pe = 137 kPa (1) 

  Þ Te = 198 K (2) 

  Þ  re = 0.332 kg/m3 (3) 

  Þ  Ve = 2890 m/s (4) 

  Þ   = 9.59e-6 kg/s (5) 
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A rocket engine can be modeled as a reservoir of gas at high temperature feeding gas to a 
convergent/divergent nozzle as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
For the questions below, assume the following: 

1. The temperature in the reservoir is 3000 K. 
2. The exhaust gases have the same properties as air:  g=1.4, R=287 J/(kg×K). 
3. The exit Mach number is 2.5. 
4. The rocket operates at design conditions (no shock waves or expansion waves present) where the 

surrounding pressure is 1*105 Pa (abs). 
5. The area of the exit is 1*10-4 m2. 
 

Determine: 
a. the temperature of the flow at the exit, 
b. the pressure in the reservoir, 
c. the throat area, 
d. the mass flow rate out of the rocket, 
e. the thrust produced by the rocket, and 
f. sketch the process on a T-s diagram. 
 
 
SOLUTION: 
 
First determine the exit temperature using the adiabatic flow relation for stagnation temperature: 

  Þ  TE = 1333 K (1) 

using T0 = 3000 K, g = 1.4, and MaE = 2.5. 
 
Now determine the pressure in the reservoir using the isentropic stagnation pressure relation: 

  Þ  p0 = 1.709*106 Pa (abs) (2) 

where pE = pB = 1*105 Pa (since the nozzle operates at design conditions, the exit pressure is equal to the 
back pressure), g = 1.4, and MaE = 2.5. 
 
The throat area may be found using the isentropic sonic area ratio: 

  Þ A* = AT = 3.79*10-5 m2 (3) 

where AE = 1*10-4 m2, g = 1.4, and MaE = 2.5.  Note that since the flow starts from stagnation conditions 
and is supersonic at the exit, the throat area must also be the sonic area. 
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The mass flow rate may be found by considering the conditions at the exit: 

  Þ   kg/s (4) 

where pE = pB = 1*105 Pa (abs), R = 287 J/(kg×K), TE = 1333 K, MaE = 2.5, g = 1.4, and AE = 1.0*10-4 m2. 
 
The thrust on the rocket may be found by applying the linear momentum equation in the x-direction on the 
control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 (5) 

where 

  (most of the rocket mass inside the CV remains stationary) (6) 

 (7) 

 (8) 

 (9) 
However, since the rocket is operating at design conditions, pE = pB = patm. 
 

Substitute and simplify.  
  Þ  F = 87.4 N (10) 

where  kg/s, MaE = 2.5, g = 1.4, R = 287 J/(kg×K), and TE = 1333 K. 
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Air, at a stagnation pressure of 7.20 MPa (abs) and a stagnation temperature of 1100 K, flows isentropically 
through a converging-diverging nozzle having a throat area of 0.01 m2.  Determine the speed and the mass 
flow rate at the downstream section where the Mach number is 4.0. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
At the section where Ma = 4.0: 

  Þ  T = 261.9 K (1) 

where g = 1.4, T0 = 1100 K, and Ma = 4.0. 
 
The velocity at the section may be found from the Mach number and speed of sound. 

  Þ  V = 1298 m/s (2) 

where R = 287 J/(kg×K). 
 
That mass flow rate is given by: 

  Þ   (3) 

where 

  Þ  p = 4.742*104 Pa  (using p0 = 7.20 MPa) (4) 

  Þ  A = 0.107 m2  (using A* = At = 0.01 m2) (5) 

 
An alternate method for determine the mass flow rate is to use the choked flow mass flow rate expression. 

  Þ   (Same result as before, within numerical error!) (6) 
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