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Figure 13.30. Plots of the various property ratios as functions of the upstream Mach
number, Ma1, for k = 1.4. Note that T02/T01 = 1 and p02/p01 = ⇢02/⇢01.

Figure 13.31. On a T -s plot, the states across a normal shock occur at the intersection of
the Fanno and Rayleigh lines.

13.18. Flow through Converging-Diverging Nozzles

Consider flow through a converging-diverging nozzle (aka a de Laval nozzle) as shown in Figure 13.32. Let’s
hold the stagnation pressure, p0, fixed and vary the back pressure, pB . The plot shown in Figure 13.33 shows
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Figure 13.32. A schematic of a converging-diverging nozzle.

how the pressure ratio, p/p0, varies with the location, x, in the nozzle for various values of the back pressure
ratio, pB/p0.

Figure 13.33. The pressure ratio p/p0 plotted as a function of location x in a converging-
diverging nozzle for di↵erent back pressure ratios pB/p0. The di↵erent cases, identified by
the numbers on the right-side of the plot, are described in the text.

Cases (identified by the numbers on the right side in the plot):

(1) There is no flow through the device since pB = p0.
(2) There is subsonic flow throughout the device. The exit pressure equals the back pressure, i.e.,

pE = pB , since the exit Mach number is subsonic. Also, MaT < 1, AT > A⇤,MaE < 1, ṁ < ṁchoked.
The flow everywhere is isentropic.

(3) There is subsonic flow throughout the device except at the throat where pT = p⇤ (MaT = 1, AT =
A⇤). The flow is now choked since downstream pressure changes won’t make it upstream of the
throat. The mass flow rate is now ṁ = ṁchoked. Further decreases in pB will not a↵ect the flow
upstream of the throat and the mass flow rate will remain at the choked mass flow rate value. The
exit pressure equals the back pressure for this case pE = pB , since the flow is subsonic at the exit
(MaE < 1). The flow everywhere is isentropic.

(4) Subsonic flow will occur in the converging section, sonic flow will occur at the throat (pT =
p⇤,MaT = 1, AT = A⇤), and supersonic flow will occur in the diverging section (MaE > 1). This
type of flow is called correctly expanded, perfectly expanded, or design flow since no shock waves
form anywhere in the device and pE = pB . Note that pE does not equal pB because the flow is
subsonic at the exit, but it’s because the flow is at design conditions (a special case).
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(5) Subsonic flow will occur in the converging section and sonic flow will occur at the throat (pT =
p⇤,MaT = 1, AT = A⇤

1). A portion of the diverging section will be supersonic with a normal shock
wave occurring at a location such that the subsonic flow downstream of the shock will have an exit
pressure equal to the back pressure: pE = pB since MaE < 1. As the back pressure decreases, the
shock wave moves downstream of the throat and toward the exit. The pressure rise across the shock
wave also increases as the back pressure decreases. There is isentropic flow upstream of the shock
and downstream of it, but across the shock the flow is non-isentropic.

(6) This case is similar to Case 5 except that the shock wave is precisely at the nozzle exit. The
pressure just downstream of the shock wave equals the back pressure since the flow is subsonic there
(pE2 = pB ,MaE2 < 1). The flow everywhere within the converging-diverging nozzle is isentropic
except right at the exit.

(7) The flow within the converging-diverging nozzle (and the exit) is isentropic (MaE > 1). The
normal shock that was located at the exit for Case 6 has moved outside the device to form a
complicated sequence of oblique shock waves alternating with expansion fans. These are two-
dimensional phenomena to be discussed in a following section of notes. This case is called the
over-expanded case since the diverging section of the device has an area that over-expands the flow
to a pressure that is lower than the back pressure (pE < pB). External shock waves are required to
compress the flow to match the back pressure.

(8) This case is similar to Case 7 except that the flow outside of the device forms a sequence of expansion
fans alternating with oblique shock waves (a sequence out of phase with the sequence mentioned in
Case 7). This case is called the under-expanded case since the diverging section of the device has
an area that is not large enough to drop the exit pressure to the back pressure (pE > pB ,MaE > 1).
External expansion waves are required expand the flow to match the back pressure.

Notes:

(1) The critical back pressure ratio corresponding to Case 3 can be found from the isentropic relations
(the flow throughout the entire device is isentropic). Assume that the geometry, and hence the exit-
to-throat area ratio, AE/AT , is given. Since for Case 3 the flow is choked we know that AT = A⇤.
Furthermore, since the exit flow is subsonic we also know that pE = pB . From the area ratio we
can determine the exit Mach number, MaE ,
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The back pressure ratio, pB/p0, for Case 3 can be determined given the exit Mach number,
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(2) The critical back pressure ratio corresponding to Case 4 can be determined in a manner similar to
that described previously in Note 1. For Case 4 however, the supersonic value for MaE should be
used when determining the exit Mach number from the area ratio.

(3) The critical back pressure ratio corresponding to Case 6 can be found by combining the isentropic
relations with the normal shock wave relations. When the shock wave occurs right at the exit of
the device, the flow just upstream of the exit can be found from the isentropic relations,
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C. Wassgren 1363 2021-12-15



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Note that the subscript “1” denotes the conditions just upstream of the shock wave. To determine
the conditions just downstream of the shock we use the normal shock wave relations,

pE2

pE1
=

2k

k + 1
Ma2E1 �

k � 1

k + 1
, (13.199)

where pE2 is the pressure just downstream of the shock. Since the downstream flow is subsonic and
because we’re at the exit of the device, the downstream pressure, pE2, must also equal the back
pressure, pB . Thus,
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=

pE2

pE1
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, (13.200)

where the di↵erent ratios are given by Eqs. (13.198) and (13.199).
(4) The location of a shock wave for a back pressure in the range between Case 3 and Case 5 can be

determined through iteration. For example:
(a) Assume a location for the shock wave, e.g., pick a value for A/AT since the geometry is known.
(b) Determine the Mach number and pressure just upstream of the shock, Ma1 and p1, using the

isentropic relations as discussed in Note 3,
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(where the supersonic Ma1 is found), (13.201)
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(c) Calculate the stagnation pressure ratio and sonic area ratio across the shock using the normal
shock relations,
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(d) Determine the exit Mach number and exit pressure ratio using the isentropic relations and the
downstream sonic area and stagnation pressure,
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(where the subsonic MaE is chosen). (13.204)

Note that since the flow is choked, the throat area is equal to the upstream sonic area, i.e.,
AT = A⇤

1. The exit pressure ratio is found from the isentropic relations,
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Note that since the exit Mach number is subsonic, the exit pressure will equal the back pressure,
i.e., pE = pB .

(e) Calculate the ratio of the back pressure to the upstream stagnation pressure,

pB
p01

=
pE
p02

p02
p01

. (13.206)

(f) Check to see if the back pressure ratio calculated in Step (e) matches with the given back
pressure ratio. If so, then the assumed location of the shock is correct. If not, then the go
back to Step (a) and repeat. If the back pressure ratio calculated in Step (e) is less than
the given back pressure ratio, then the assumed shock location is too far downstream. If the
back pressure ratio calculated in Step (e) is greater than the given back pressure ratio, then the
assumed shock location is too far upstream. The logic for this step is illustrated in Figure 13.34.

(g) Photographs for the various converging-diverging nozzle cases are shown in Figure 13.35.

C. Wassgren 1364 2021-12-15



Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Figure 13.34. A plot illustrating in what direction to change the shock location during
iteration. The calculated back pressure is compared to the actual back pressure. If the
calculated back pressure is larger than the actual back pressure, then the shock should be
moved further downstream. Alternately, if the calculated back pressure is smaller than the
actual back pressure, then the shock should be moved further upstream.

(h) In real nozzles flows, the flow will typically separate from the nozzle walls as a result of the
large adverse pressure gradient occurring across a shock wave. Interaction of the shock with
the separated boundary layer results in a more gradual pressure rise than what is expected for
the ideal, normal shock analysis.
It is also possible that downstream pressure information can propagate upstream in the di-
verging section even when the core flow is supersonic. In a real flow, a boundary layer will
form along the wall with the flow in part of this boundary layer being subsonic. Thus, pressure
information can propagate upstream within the subsonic part of the boundary layer and a↵ect
the flow in the diverging section. When the back pressure is in the range corresponding to
Case 7 (back pressure less than the exit pressure when a shock stands at the exit, and greater
than the isentropic case corresponding to supersonic diverging section flow), oblique shocks will
typically form within the diverging section and flow separation occurs as shown in Figure 13.36.
The exact pressure and location of the separation point are dependent on the boundary layer
flow.

(i) Experimental pressure measurement data within a converging-diverging nozzle are shown in
Figure 13.37. Also included in the plot are predictions using the analysis described in this
section (a combination of isentropic flow relations and normal shock wave relations). As can
be observed in the plot, the real data are predicted well by the models.
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Figure 13.35. Photographs corresponding to the di↵erent converging-diverging nozzle cases
shown in Figure 13.33.
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Figure 13.36. Photographs showing separated flow in supersonic flow in the diverging
section of a converging-diverging nozzle.
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Figure 13.37. A photograph of a converging-diverging nozzle and corresponding pressure
data shown in a plot.
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During a test docking of the Progress M-34 supply ship with the Mir space station in 1997, a collision 
occurred which punctures the hull of Spektr Module of Mir.  Assume the puncture hole had a minimum 
area of 1.0 cm2 and an outer area of 1.5 cm2 (the size of the hole was not directly measured).  The volume 
of the Spektr module was 61.9 m3 and had an initial interior pressure of 100 kPa (abs) and temperature of 
34 °C. 
1. Determine the mass flow rate of air from the capsule when the hole initially occurred. 
2. Write an equation relating how the mass of air inside the module changed with time.  You may assume 

that the air behaved as a perfect gas throughout the entire discharge process and that the temperature 
remained constant inside the space station (thanks to the small discharge rate and onboard heaters). 

3. Calculate the thrust acting the space station for the initial conditions. 
 
 

 

 
 
 
 
 
SOLUTION: 
 
Since the air in the space station is discharging into space, the back pressure is essentially zero and the flow 
will always be choked with a mass flow rate of, 

 (1) 

where, 

 (2) 

where M is the mass of air within the space station and V is the interior volume of the station.  Using the 
given data: 

g  = 1.4 
R = 287 J/(kg.K) 
p0,t = 0  = 100*103 Pa (abs) 
T0  = 34 + 273 = 307 K 
A* = Amin = 1 cm2 = 1*10-4 m2 
V  = 61.9 m3 
Þ r0 = 1.135 kg/m3 
Þ Mt = 0 = 70.25 kg 
Þ  = 2.90*10-2 kg/s 
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The mass in the space station may be found as a function of time by applying conservation of mass to a 
control volume surrounding the station as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3) 

where, 

 (4) 

 (5) 

Note that since the back pressure is always zero, the mass flow rate out of the space station will always be 
choked.  Substitute and simplify. 

 (6) 

where Eqs. (1) and (2) have been used.  Solve the differential equation given in Eq. (6). 

    (Note that T0 = constant.) (7) 

 (8) 

    where A* = Amin (9) 
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The thrust acting on the space station may be found by applying the Linear Momentum Equation to the 
same control volume, 

 (10) 

where, 

  (The thrust is the force required to hold Mir stationary.) (11) 

 (12) 

 (13) 

   (where Ae = Aouter) (14) 

Substitute and simplify, 
 (15) 

 
The exit conditions may be found using isentropic relations since the flow through the hole is under-
expanded. 

  Þ  Mae = 1.8541 (16) 

  Þ  pe/p0 = 0.1602  Þ  pe = 16.02 kPa (abs)   (p0 = 100 kPa abs) (17) 

  Þ  Te/T0 = 0.5926  Þ  Te = 181.9 K   (T0 = 307 K) (18) 

  Þ  Ve = 501.3 m/s (19) 

Now calculate the thrust using Eq. (15) and the mass flow rate found in the first part of this problem. 
Tt = 0 = 16.94 N (20) 

Note that this is the thrust at t = 0.  The thrust will vary with time since the stagnation pressure, and thus 
exit pressure, will vary with time as mass discharges from the space station. 
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The orientation of a hole can make a difference.  Consider holes A and B in the figure below which are 
identical but reversed.  For the given air properties on either side, compute the mass flow rate through each 
hole and explain why they are different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First consider flow through hole B which can be considered a converging nozzle.  First check to see if the 
flow is choked. 

  Þ  The flow is not choked.  (Note that gair = 1.4.) (1) 

 
The mass flow rate can be found from the conditions at the hole exit. 

 (2) 
where, 

 (3) 

 (4) 

 (5)  

 (6) 

 (7) 

Using the given data: 
g = 1.4 
R  = 287 J/(kg×K) 
p0 = 150e3 Pa (abs) 
T0 = 20 °C = 293 K 
pE = 100e3 Pa (abs) (Note that since the exit flow is subsonic, pE = pB.) 
AE = 0.2 cm2 = 2.0e-5 m2 
MaE = 0.784 
r0 = 1.784 kg/m3 
rE = 1.335 kg/m3 
TE = 261 K 
VE = 254 m/s 
\   =  6.78e-3 kg/s 
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Now consider hole A which can be modeled as a converging-diverging nozzle.  Check to see what pB/p0 
ratio will result in choked flow (case 3 in the figure below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Þ  MaE,crit  =  0.43 (8) 

using AE = 0.3 cm2 and AT = 0.2 cm2. 

  Þ   (9) 

For the given situation, pB/p0 = 0.6667 (refer to Eq. (1)) < pE,crit/p0 = 0.8805 so the flow for hole A must be 
choked!  The mass flow rate through the hole can be found using the (sonic) conditions at the throat. 

 (10) 
where 

  (using gair = 1.4) (11) 

 (12) 

 (13)  

 (14) 

 (15) 

Using the given data: 
AT = 0.2 cm2 = 2.0e-5 m2 
r* = 1.131 kg/m3 
T* = 244.2 K 
VT = 313.2 m/s 
\   =  7.08e-3 kg/s 
 
 

The different mass flow rates through holes A and B are because the flow through hole A is choked (the 
hole acts as a converging-diverging nozzle) while through hole B the flow is not choked (the hole acts as a 
converging nozzle).  

( )
1

2 11 2
,crit ,crit2
* 1

,crit 2

1 Ma1
Ma 1

E EE

T E

A A
AA

g
gg

g

+
--

-

æ ö+
ç ÷= =
ç ÷+è ø

1,crit 2
,crit

0

11 Ma
2

E
E

p
p

g
gg --æ ö= +ç ÷

è ø
,crit

0
0.8805Ep

p
=

  !m = ρTVT AT

1
1

*
0

11 0.6339
2T

ggr r r
--æ ö= = + =ç ÷

è ø
0

0
0

p
RT

r =

1
2

0 0

11 Ma
2

E B
E

p p
p p

g
gg --æ ö= = +ç ÷

è ø
* *

TV c RTg= =
1

*
0

11 0.8333
2

T T g --æ ö= + =ç ÷
è ø

  !mA

p/p0 

x 

p*/p0 

1 

throat exit 

1 
2 
3 

4 

5 
6 
7 

8 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

Video solution: https://www.youtube.com/watch?v=nD-3DbTDYqg

C. Wassgren 1373 2021-12-15



comp_20

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1374 2021-12-15



comp_20

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1375 2021-12-15



comp_20

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1376 2021-12-15



comp_29

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1377 2021-12-15



  comp_36 

Page 1 of 2 

A rocket engine is designed to operate at a pressure ratio (inlet reservoir pressure/back pressure) of 37.  
Find: 

a. the ratio of the exit area to the throat area which is necessary for the supersonic exhaust to be 
correctly expanded, 

b. the Mach number of the exit flow under correctly expanded conditions, 
c. the lowest pressure ratio (p0/pb) at which the same nozzle would be choked, and 
d. the pressure ratio (p0/pb) at which there would be a normal shock wave at the exit. 

Assume the specific heat ratio of the gas is 1.4. 
 
 
SOLUTION: 
 
 
 
 
 
 
The area ratio may be found from the isentropic sonic area ratio and the isentropic pressure ratio. 

  Þ  Mae = 3.0  (since at design conditions, the flow is isentropic) (1) 

  Þ  Ae/At = 4.3  (since At = A*) (2) 

 
The lowest pressure ratio for which the nozzle will be choked may be found Eqns. (2) and (1), but using the 
subsonic Mach number. 

  Þ  Mae = 0.14 (3) 

  Þ  p0/pb = 1.01  Note that pe = pb when the flow just becomes choked. (4) 
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Now consider a case where a shock wave occurs at the exit of the device. 
 
 
 
 
 
 
 
From Eqn. (1), Mae1 = 3.0 and p01/pe1 = 37.  From the normal shock relations, 

  Þ  Ma2 = 0.475 (5) 

  Þ  p02/p01 =  0.327 (6) 

and the isentropic relations: 

  Þ  p2/p02 = 0.857 (7) 

Since the flow downstream of the shock is subsonic, p2 = pb.  Thus, 

  Þ  p01/pb = 3.6  (8) 
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Which nozzle will fill the tank faster (or will they fill at the same rate), assuming that the tank is initially 
evacuated?  Justify your answer.  The upstream stagnation properties, throat areas, and tank volumes are 
identical in both cases. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The converging-diverging nozzle will fill the tank faster.  Since the tank is initially evacuated, the flow will 
start at choked conditions in each case.  Hence, the mass flow rate into each tank will be the choked flow 
mass flow rate (i.e., the maximum mass flow rate), which will be identical in both cases since the throat 
areas and stagnation properties are identical.  However, the converging-diverging nozzle will remain 
choked for a wider range of back pressure ratios than the converging nozzle.  Hence, converging-diverging 
nozzle will fill the tank more rapidly. 
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An 8.5 m3 vacuum tank is to be used to create a flow at an exit Mach number of MaE = 2.0 (refer to the figure 
below).  A plug is put into the nozzle and the tank is evacuated until it contains 0.45 kg of air at a temperature of 296 
K.  When the plug is removed, air flows from the atmosphere into the tank through the converging-diverging nozzle.  
The throat area is AT = 6.5 cm2. 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the design exit area. 
b. Determine the initial pressure in the tank. 
c. Determine the initial mass flow rate through the nozzle. 
d. Determine the exit pressure, pE, immediately after the flow begins. 
e. Determine the tank pressure at which a normal shock wave will stand in the nozzle exit plane. 
 
 
SOLUTION: 
 
The design exit area may be found from the design exit Mach number, MaE,d = 2.0, and the isentropic flow relations. 

  Þ  AE,d/A* = 1.6875  Þ  AE,d = 11.0 cm2 (1) 

where the sonic area is equal to the throat area, A* = AT = 6.5 cm2, since the flow goes from stagnation conditions to 
supersonic conditions. 
 
 
The initial pressure in the tank may be found using the ideal gas law, 

  Þ  ptank(t = 0) = 4.50 kPa (abs) (2) 

where M = 0.45 kg, V = 8.5 m3, R = 287 J/(kg.K), and T = 296 K. 
 
 
To determine the exit plane pressure and initial mass flow rate through the nozzle, first determine whether or not the 
flow is choked.  Determine the pressure at the exit plane when the flow first becomes choked (i.e., MaT = 1) by first 
determining the exit Mach number when the flow first becomes choked, then using this Mach number and the 
isentropic relations to determine the exit pressure ratio. 

  Þ  MaE = 0.372  (3) 

where AE/A* = 1.6875 from Eq. (1) (note that when the flow is choked, A* = AT).  The pressure at the exit for this 
condition is found from the isentropic flow relation. 

  Þ  pE/p0 = 0.9088 Þ  pE = 91.8 kPa (abs) (4) 

where p0 = patm = 101 kPa (abs).  Since this exit pressure is larger than the initial tank pressure, the flow must be 
choked and the mass flow rate is then, 
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  Þ  0.154 kg/s (5) 

where p0 = 101 kPa (abs), T0 = 296 K, R = 287 J/(kg.K), g = 1.4, and A* = AT = 6.5 cm2. 
 
The design pressure for the nozzle is found using the isentropic relations and the design Mach number. 

  Þ  pE,d/p0 = 0.1278  Þ  pE,d = 12.9 kPa (abs) (6) 

Since the exit pressure at design is larger than the initial tank pressure, the flow must be underexpanded and the exit 
pressure will be equal to the design exit pressure of pE,d = 12.9 kPa (abs). 
 
The tank pressure at which a normal shock stands in the exit plane is found by using the design Mach number and 
exit pressure found in Eq. (6) just upstream of the shock, then applying the normal shock relations across the exit 
shock wave. 

MaE1 = 2.0  Þ  pE2/pE1 = 4.500  (from the normal shock relations)  Þ  pE2 = 58.1 kPa (abs)  (7) 
where pE1 = 12.9 kPa (abs) from Eq. (6).  Since the flow just downstream of the shock is subsonic, the downstream 
exit pressure will equal the back pressure.  Thus, the tank pressure at which a normal shock just stands at the exit is 
58.1 kPa (abs). 
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A converging-diverging nozzle, with an exit to throat area ratio, Ae/At, of 1.633, is designed to operate with 
atmospheric pressure at the exit plane, pe = patm. 
a. Determine the range(s) of stagnation pressures for which the nozzle will be free from normal shocks. 
b. If the stagnation pressure is 1.5patm, at what position, x, will the normal shock occur? 

 
The converging-diverging nozzle area, A, varies with position, x, as: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
If there are no shocks, then the flow is assumed to remain isentropic.  Determine the back pressure 
corresponding to isentropic sonic area ratio.  Consider, for the moment, only the subsonic condition (case 3 
shown in the figure above). 

  Þ   MaE = 0.39  (isentropic flow relations) (1) 

Þ     (isentropic flow relations) (2) 

Hence, for patm £ p0 £ patm/0.9016 = 1.11 patm the flow throughout the nozzle will be subsonic and, as a 
result, there will be no shocks within the nozzle. 
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It’s also possible to have isentropic flow within the nozzle, yet have a shock wave at the nozzle exit (case 6 
in the figure).  For the case when a normal shock wave is stationed at the nozzle exit: 

  Þ   MaE = 1.96  (isentropic flow relations) (3) 

Þ    (isentropic flow relations) (4) 

and   (normal shock relations) (5) 

Note that since downstream of the shock the flow is subsonic and at the exit, pE2 = patm. 
 
Now determine the upstream stagnation pressure corresponding to the given conditions. 

 (6) 

 (7) 

 
Therefore, the device will not contain normal shocks for the following range of stagnation conditions: 

  and   (8) 

 
 

Based on Eq. (8), a normal shock will occur somewhere within the diverging portion of the nozzle if the 
stagnation pressure is p01 = 1.5patm.  Use an iterative approach to determine the location of the shock as 
given below. 
 

a. Assume a location for the shock wave (e.g., pick a value for A/At since the geometry is known). 
b. Determine the Mach number and pressure just upstream of the shock, Ma1 and p1, using the 

isentropic relations as discussed in Note 2. 

  (where the supersonic Ma1 is chosen) (9) 

 (10) 

c. Calculate the stagnation pressure ratio and sonic area ratio across the shock using the normal 
shock relations: 

 (11) 

d. Determine the exit Mach number and exit pressure ratio using the isentropic relations and the 
downstream sonic area and stagnation pressure: 

(where the subsonic Mae is chosen) (12) 
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Note that since the flow is choked, the throat area is equal to the upstream sonic area, i.e., At = A1*. 

 (13) 

 
Note that since the exit Mach number is subsonic, the exit pressure will equal the back pressure, 
i.e., pe = pb. 

e. Calculate the ratio of the back pressure to the upstream stagnation pressure: 

 (14) 

f. Check to see if the back pressure ratio calculated in step (e) matches with the given back pressure 
ratio.  If so, then the assumed location of the shock is correct.  If not, then the go back to step (a) 
and repeat.  If the back pressure ratio calculated in part (e) is less than the given back pressure 
ratio, then the assumed shock location is too far upstream.  If the back pressure ratio calculated in 
part (e) is greater than the given back pressure ratio, then the assumed shock location is too far 
downstream.   

 
Apply this algorithm using the given data and summarize in the following table.  (Note that the correct 
position is found manually in this case, but the method could easily be made into a computer program and 
the correct position could be found using an approach such as a bisection method.) 
 

 
 
Thus, the shock is located at x/L = 0.9306. 
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x/L A(x)/AT Ma1 p1/p01 p02/p01 A1*/A2* AE/A2* MaE pE/p02 pB/p01 p01/pB comment
0.8000 1.2279 1.5716 0.2454 0.9056 0.9056 1.4788 0.4382 0.8764    0.7937    1.2600    shock too far upstream
0.9000 1.4051 1.7681 0.1827 0.8267 0.8267 1.3500 0.4948 0.8459    0.6993    1.4299    shock too far upstream
0.9500 1.5127 1.8649 0.1575 0.7835 0.7835 1.2794 0.5343 0.8234    0.6451    1.5502    shock too far downstream
0.9250 1.4573 1.8167 0.1696 0.8052 0.8052 1.3150 0.5134 0.8354    0.6727    1.4865    shock too far upstream
0.9375 1.4846 1.8408 0.1635 0.7944 0.7944 1.2973 0.5235 0.8296    0.6591    1.5173    shock too far downstream
0.9313 1.4709 1.8288 0.1665 0.7998 0.7998 1.3061 0.5184 0.8326    0.6659    1.5017    shock too far downstream
0.9281 1.4641 1.8228 0.1681 0.8025 0.8025 1.3105 0.5159 0.8340    0.6693    1.4941    shock too far upstream
0.9297 1.4675 1.8258 0.1673 0.8012 0.8012 1.3083 0.5172 0.8333    0.6676    1.4980    shock too far upstream
0.9305 1.4692 1.8273 0.1669 0.8005 0.8005 1.3072 0.5178 0.8329    0.6667    1.4998    shock too far upstream
0.9309 1.4700 1.8280 0.1667 0.8002 0.8002 1.3067 0.5181 0.8327    0.6663    1.5007    shock too far downstream
0.9307 1.4696 1.8276 0.1668 0.8004 0.8004 1.3070 0.5179 0.8329    0.6666    1.5002    shock too far downstream
0.9306 1.46947 1.82753 0.1669 0.8004 0.8004 1.30702 0.51791 0.8329    0.6666    1.5001    just about right!
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Air flows through a converging-diverging nozzle, with Ae/At = 3.5 where At = 500 mm2.  The upstream 
stagnation conditions are atmospheric; the back pressure is maintained by a vacuum system.  Determine the 
range of back pressures for which a normal shock will occur within the nozzle and the corresponding mass 
flow rate. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
A shock wave will appear within the nozzle for the range of back pressures indicated in the figure shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The back pressure ratio corresponding to case 3 may be found from the isentropic relations: 

  Þ  Mae = 0.168 (1) 

(Note that for case 3, At = A* since the flow is choked.) 

  Þ  pb/p0 = 0.980 (2) 

(Note that since the flow is subsonic at the exit, pe = pb.) 
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The back pressure ratio corresponding to case 6 may be found by combining the isentropic relations with 
the normal shock relations. 

  Þ  Mae1 = 2.80 (3) 

  Þ  Mae2 = 0.488 (4) 

  Þ  p02/p01 = 0.389 (5) 

  Þ  pb/p02 = 0.850 (6) 

  Þ  pb/p01 = 0.331 (7) 

 
Thus, a normal shock wave will appear in the diverging portion of the converging-diverging nozzle over 
the range:  

0.331 < pb/p0 < 0.980 (8) 
where p0 = 1 atm = 101 kPa (abs). 

 
The mass flow rate when the flow is choked is: 

  Þ   (9) 

where g = 1.4, p0 = 101 kPa, R = 287 J/(kg×K), T0 = 293 K, and A* = At = 500 mm2. 
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A satellite includes a correctional propulsive unit consisting of a tank that is 3 ft3 in volume and contains 
helium initially at 2000 psia.  Heaters on the satellite maintain the tank temperature at 0 °F.  The tank is 
connected to a short, insulated, convergent-divergent nozzle having a throat area of 1 in2 and an exit area of 
3 in2.  The mass of the satellite, exclusive of the helium, is 50 lbm.  Plot the acceleration of the satellite as a 
function of time if the valve is left open. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The pressure in space is nearly zero so the flow from the nozzle will always be underexpanded. 
 
Apply the LME in the x-direction to the CV shown below.  Use a frame of reference fixed to the satellite. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (The velocity of He in tank is zero in the given FOR.) (2) 

 (3) 

 (4) 
 (5) 

 (6) 

Substitute and simplify. 
 (7) 

 
Since the flow within the nozzle will always be choked and isentropic (the back pressure is zero), the mass 
flow rate is: 

    where A* = Athroat (8) 
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The exit velocity and pressure may be expressed in terms of the exit Mach number: 

 (9) 

 (10) 

Substitute and simplify. 

 (11) 

 
The Mach number at the exit is found using the given area ratio: 

  Þ  Mae = 3.0   (Note:  gHe = 1.66) (12) 

 
Using the given data: 

p0 = 2000 psia 
At = 1 in2 
Ae = 3 in2 
Mae = 3.0 
gHe = 1.66 
RHe = 386.1 (ft.lbf)/(lbm.°R) 
Vtank = 3 ft3 
T0 = 460 °R 

Þ   (13) 

Þ  asat(t = 0) = 54.7 ft/s2 = 1.7g   (where g is 32.2 ft/s2) (14) 
 

Note that the pressure within the tank will decrease with time as helium is discharged from the tank (the 
tank temperature remains constant due to the heaters). 

 (15) 

     from conservation of mass (16) 

Substitute Eqn. (8) and simplify. 

 (17) 
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Substitute Eq. (19) into Eq. (13) to determine how the satellite mass changes with time. 

 (20) 

 
Summarizing: 

 (21) 

 (22) 

 (23) 

 
Using the given initial data, the satellite tank pressure and acceleration may be plotted as a function of time 
as shown in the figure below. 
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Air flows through a frictionless, adiabatic converging-diverging nozzle.  The air in the reservoir feeding the 
nozzle has a pressure and temperature of 700 kPa (abs) and 500 K, respectively.  The ratio of the nozzle 
exit to throat area is 11.91.  A normal shock wave stands where the upstream Mach number is 3.0.  
Calculate the Mach number, the static temperature, and static pressure at the nozzle exit plane. 
 
 
SOLUTION: 
 

p0  =  700 kPa (abs) 
T0  =  500 K 
AE/AT  =  11.91 
Ma1  =  3.0 
 
 

Using the normal shock relations: 
Ma1 = 3.0  Þ   Ma2  = 0.4752 (1) 
 T02/T01 =  1 (2) 
 p02/p01 = 0.3283 (3) 
 

The flow is isentropic from the reservoir to just upstream of the shock (location 1) so that: 
p01  =  p0 (4) 

T01 = T0 (5) 
A1/A1* = 4.2346 (using Ma1 = 3.0) (6) 
 

The flow is also isentropic from just downstream of the shock (location 2) to the exit so that: 
p0E  =  p02 (7) 
T0E = T02 (8) 
A2/A2* = 1.390 (using Ma2 = 0.4752) (9) 
 

Combine the previous equations to get the exit stagnation conditions. 

 (10) 

 (11) 

Now determine the exit sonic area ratio (AE/A*) so that it can be used to determine the exit Mach number. 

  (Note that AT = A1*.) (12) 

 
Use this area ratio and the isentropic flow sonic area relation to determine the exit Mach number.  Note that 
the exit Mach number will be subsonic since the flow downstream of the shock wave is subsonic. 

 (13) 

 
Use the isentropic flow relations with the exit Mach number to determine the stagnation temperature and 
pressure ratios. 

  and   (14) 

Combine Eqns. (14) with Eqs. (10) and (11) to determine the exit static temperature and pressure. 
TE  =  498 K  and pE = 226 kPa (abs) 
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A large reservoir at 20 °C and 800 kPa (abs) is used to fill a small tank through a converging-diverging 
nozzle with 1 cm2 throat area and 1.66 cm2 exit area.  The small tank has a volume of 1 m3 and is initially at 
20 °C and 100 kPa (abs).  Estimate the elapsed time when: 
a. shock waves begin to appear inside the nozzle, and 
b. the mass flow rate begins to drop below its maximum value. 
You may assume that the tank filling process occurs isothermally.   
c. Describe (but you need not work out) how your solution approach would change if the tank is well 

insulated so that the filling process occurs adiabatically. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
First check to see where the flow is on the diagram below.  At t = 0: 

pb/p0 = (100 kPa)/(800 kPa) = 0.125 (1) 
 
The back pressure ratios corresponding to cases 3 (onset of choked flow) and 4 (design conditions) – refer 
to the plot below – may be found from the isentropic relations. 

  Þ  Mae = 0.3796, Mae = 1.9802 (2) 

using Ae = 1.66 cm2 and A* = At = 1 cm2 (Þ Ae/A* = 1.66). 

Þ  pb/p0 = 0.9053, 0.1318 (3) 

 
The back pressure ratio when a normal shock wave stands at the nozzle exit may be found by combining 
the isentropic and normal shock wave relations. 

  Þ  Mae2 = 0.5808  (using Mae1 = 1.9802 – from Eq. (2)) (4) 

  Þ  p02/p01 = 0.7301 (5) 

  Þ  pb/p02 = 0.7957 (6) 

  Þ  pb/p01 = 0.5809 (7) 
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The mass flow rate into the tank will be choked until pb/p0 ³ 0.9053.  The choked mass flow rate into the 
tank is given by: 

  Þ   (8) 

 
The (back) pressure in the tank may be found by applying conservation of mass to a control volume 
surrounding the tank and making use of the ideal gas law.  

  Þ   (9)  

Note that the mass flow rate into the tank is the choked mass flow rate (Eq. (8), which remains constant up 
until case 3 is reached), and M0 is the mass inside the tank at t = 0. 

  Þ  M0 = 1.189 kg (10) 

where pb,t = 0 = 100 kPa, Tb, t = 0 = 293 K, R = 287 J/(kg×K), and Vtank = 1 m3.  
 
Thus, the time for the onset of shock waves in the nozzle (case 6) is: 

 (11) 

  Þ  tshocks = 23.0 s (12) 

 
The time for when the flow is no longer choked (case 3) is: 

  Þ  tunchoked = 39.3 s (13) 
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If we assume that the tank fills adiabatically (likely a more realistic scenario), then the calculations become 
much more involved since the temperature in the tank will also vary as the pressure varies.  The (back) 
pressure in the tank will increase as additional mass enters the tank.  We can determine how the pressure 
varies by applying conservation of energy and conservation of mass to a control volume surrounding the 
tank as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
Applying conservation of energy to a control volume surrounding the tank gives: 

 (14) 

 (15) 

  (where conservation of mass has been used) (16) 

 (17) 

where the mass flow rate entering the tank is given by Eq. (8) (the flow is choked for the conditions we’re 
interested in so that mass flow rate will remain constant).  Note that we are assuming that the tank is well 
insulated indicating that the filling process occurs adiabatically ( ).  The temperature and 

velocity of the air entering the tank (Te and Ve) may be found following an approach similar to the ones 
used previously to determine the exit pressure.  For back pressures less than the value corresponding to 
case 6 (normal shock at the exit plane), the exit temperature and velocity are given by: 

  Þ  Te/T0 = 0.5605  Þ  Te = 164.2 K (18) 

  Þ Ve = 508.7 m/s (19) 

 
The (back) pressure in the tank may be found by applying conservation of mass to the same control volume 
and making use of the ideal gas law.  

  Þ   (20)  

where Tb is found from the (numerical) solution of Eq. (17).  Note that the mass flow rate into the tank is 
the choked mass flow rate (Eqn. (8), which remains constant up until case 3 is reached), and M0 is the mass 
inside the tank at t = 0 (Eq. (10)). 
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When pb/p0 ³ 0.5806 (corresponding to case 6), then the temperature and velocity of the air entering the 
tank (Te and Ve) must be found by taking into consideration a normal shock wave located somewhere 
within the diverging portion of the nozzle.  The exit temperature and velocity will depend upon the location 
of the shock wave, which in turn will depend upon the back pressure.  Hence, the shock finding algorithm 
described in the course notes (it won’t be repeated here) must be used for a given back pressure to 
determine the location of the normal shock wave.  Once this location has been found (and hence, Ma1 is 
known) , the exit temperature and velocity may be found by combining the isentropic and normal shock 
relations: 

   (Note that T0 = T01 = T02) (21) 

 (22) 

where the exit Mach number is found from the area ratio: 

 (23) 

where 

   (24) 

where Ma1 is the Mach number just upstream of the shock wave.  With the calculated Te and Ve, Eqn. (17) 
may be solved numerically simultaneously with Eq. (20) so that pb may be determined. 
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A converging-diverging nozzle, with Ae/At = 1.633, is designed to operate with atmospheric pressure at the 
exit plane.  Determine the range(s) of stagnation pressures for which the nozzle will be free from normal 
shocks. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There will be two ranges of back pressures that will not produce shock waves within the C-D nozzle.  In 
region 1 shown above, the entire flow remains subsonic (with possible sonic flow at the throat).  In region 2 
the flow is subsonic in the converging section, sonic at the throat, then subsonic throughout the diverging 
section.  Shock waves and expansion fans may occur outside of the C-D nozzle in region 2. 
 
Consider pressure curve 1 indicated in the figure above.  For this case the exit Mach number is given by: 

 (1) 

Solve for the subsonic exit Mach number to get: 
MaE  =  0.387 
 

Now use the isentropic stagnation pressure ratio to determine the reservoir stagnation pressure for these 
conditions. 

  Þ  p0  = 1.11pE  =  112 kPa  (where pE = patm = 101 kPa) (2) 

Hence, the nozzle will be shock free for: 
patm £ p0 £ 1.11patm  or  101 kPa £ p0 £ 112 kPa 
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Now consider pressure curve 2 indicated in the figure above.  For this case a normal shock wave occurs at 
the nozzle exit plane.  Just upstream of the shock wave the Mach number can be found using the sonic area 
ratio. 

 Þ MaE1 = 1.96  (using the isentropic flow relations) 

 Þ  pE2/pE1 = 4.3152 (using the normal shock relations with MaE1 = 1.96) 
 Þ  pE1/p01 = 0.1359 (using the isentropic flow relations with MaE1 = 1.96) 
 

Now solve for pE2/p01. 

 

Note that p01 = p0 (the reservoir pressure) and pE2 = patm (since the flow downstream of the shock is 
subsonic). 

Þ  p0 = 1.7052 patm 
 

Thus, normal shocks will not form in the C-D nozzle when: 
p0 > 1.71 patm  or  p0 > 172 kPa 
 

To summarize, the C-D nozzle will remain shock-free for the following range of stagnation pressures: 
patm £ p0 £ 1.11patm and  p0 > 1.71 patm     
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A crude converging-diverging nozzle with an exit-to-throat area ratio of Ae/At = 16 is built using a straight-
sided conical diffuser as shown in the figure below. 
 
 
 
 
 
 
 
 
 
The nozzle is supplied by an air reservoir of pressure, pres, and temperature, Tres.  The nozzle discharges into 
atmospheric conditions (patm = 1 atm). 
 
a. If a shock wave forms half-way along the diffuser, i.e., x/L = 0.5, determine the reservoir pressure, pres. 
b. Determine over what range of reservoir pressures the flow will be choked. 
 
 
SOLUTION: 
 
First determine the area in the straight-sided nozzle as a function of position in the nozzle. 

 (1) 

 (2) 

  where   (3) 

 (4) 

For x/L = 1/2 and Ae/At = 16 , A/At = 6.25. (5) 
 
Using the isentropic flow relations (or tables) for air (g = 1.4) and noting that the throat is also the sonic 
area since there is a shock wave in the diverging section: 

 (6) 

 
Using the normal shock relations (or tables) for air: 

 (7) 

 
Now determine the sonic area ratio at the exit, downstream of the shock wave. 

 (8) 

Using the isentropic flow relations (or tables) for air: 

 (9) 
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Now determine the upstream stagnation pressure using the pressure ratios.  Note that pe = patm = 1 atm since 
the exit Mach number is subsonic. 

 (10) 

 (11) 
 

For a flow that just becomes choked: 

 (12) 

 (13) 

 (14) 
Therefore, the flow will be choked for p0 ≥ 1.001 atm. 
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For the purposes of an experiment, we wish to design a de Laval nozzle which will be supplied from a 
compressed air reservoir (specific heat ratio of 1.4).  It is required that: 
1. there is a normal shock across the exit of the diffuser, and 
2. the jet emerging downstream of the shock should have a Mach number of 0.5. 
 
Find: 
a. the ratio of the cross-sectional area at the diffuser exit to the cross-sectional area of the throat, 
b. the ratio of the ambient pressure downstream of the shock to the pressure in the compressed air 

reservoir, and 
c. the ratio of the ambient pressure downstream of the shock to the throat pressure.  
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
The Mach number just upstream of the shock wave at the exit may be found using the normal shock 
relations, 

  Þ  MaE1 = 2.6457 (1) 

 
The ratio of the cross-sectional area at the diffuser exit to the cross-sectional area of the throat may be 
found using the isentropic sonic area ratio and the Mach number just upstream of the shock, 

  Þ  AE/AT = 3.0236  (2) 

Note that since the flow at the exit is supersonic, the throat must be at a sonic Mach number. 
 
The pressure ratio, pb/p01, is given by, 

  Þ  pb/p01 = 0.3736  (3) 

where 

  (since MaE2 < 1) (4) 

  Þ  pE2/pE1 = 7.9997  (normal shock relations) (5) 

  Þ  pE1/p01 = 0.0467 (isentropic stagnation pressure ratio) (6) 

 
The pressure ratio, pb/p*, is given by, 

  Þ  pb/p* = 0.7071  (7) 

where 

  Þ  p*/p01 = 0.5283  (isentropic stagnation pressure ratio) (8) 
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Consider the flow of air through the converging-diverging nozzle shown in the figure below.  The flow begins at 
stagnation conditions with p0 = 100 kPa (abs) and T0 = 300 K.  The nozzle exit-to-throat area ratio is AE/AT = 1.688 
with a throat area of AT = 1.0*10-4 m2. 
 
 
 
 
 
 
 
 
 
a.  Determine the back pressure at which the flow first becomes choked. 
b. Determine the range of back pressures at which the flow at the exit is supersonic. 
c. Determine the mass flow rate through the nozzle when the exit Mach number is 0.2. 
 
 
SOLUTION: 
The flow first becomes choked when the Mach number at the throat is equal to one (AT = A*) then goes back to 
subsonic conditions.  The area ratio for this case is 

. (1) 

where k = 1.4.  Since the flow is entirely isentropic, the back pressure ratio corresponding to this Mach number 
may be found using, 

   Þ  pE/p0 = 0.9088  (2) 

Since the exit Mach number is subsonic, the exit pressure and back pressure are the same.  Hence, 
pB = pE. (3) 

Using the given inlet stagnation pressure and Eqs. (2) and (3),  
pB = 90.8 kPa (abs) (4) 

 
 
The flow at the exit will be supersonic for back pressures less than the case when a normal shock wave stands at 
the nozzle exit.  The back pressure at which a normal shock stands at the exit may be found by noting that the flow 
upstream of the exit will be entirely isentropic (and choked), with the Mach number just upstream of the shock at 
the exit being supersonic.  Hence, 

. (5) 

The pressure ratio just upstream of the shock at the exit may be found from the isentropic relations, 

   Þ  pE1/p01 = 0.1278  Þ  pE1 = 12.78 kPa (abs) (6) 

where p01 is the upstream stagnation pressure (the stagnation pressure decreases across the shock). 
 
The static pressure ratio across the shock may be found using the normal shock relations, 

 Þ  pE2/pE1 = 4.500   (7) 

so that the pressure just downstream of the shock is, 

 Þ  pE2 = 57.51 kPa (abs). (8) 
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Note that the Mach number just downstream of the exit will be subsonic, so the downstream pressure will be 
equal to the back pressure.  Hence, 

. (9) 

Thus, the range of back pressures for which the exit Mach number will be supersonic is, 
pB < 57.51 kPa (abs). (10) 

 
Note that the Mach number downstream of the shock wave is, 

   Þ  MaE2 = 0.5774 (11) 

and the stagnation pressure ratio across the shock wave is, 

   Þ  p02/p01 = 0.7209  Þ  p02 = 72.1 kPa (abs) (12) 

The isentropic stagnation pressure ratio at the downstream side of the shock is, 

   Þ  pE2/p02 = 0.7978, (13) 

The back pressure for this case can be found by combining relations in the following manner, 

,  (14) 

which is exactly the same result found in Eqs. (8) and (9). 
 
 
Given that the flow chokes at an exit Mach number of 0.3721 (found from Eq. (1)), the flow in the device must be 
entirely subsonic when the exit Mach number is 0.2.  Thus, the mass flow rate may be found from the isentropic 
relations evaluated at the exit, 

, (15) 

where, 

  and  , (16) 

, (17) 

, (18) 

. (19)   

Using the given data, 
 Þ   r0 = 1.161 kg/m3 
 rE = 1.139 kg/m3 
 TE = 297.6 K 
 cE = 345.8 m/s 
 VE = 69.16 m/s 
 AE = 1.69*10-4 m2 

 Þ   (20) 

Note that this mass flow rate is less than the choked flow mass flow rate (since the flow isn’t choked). 
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Consider the supersonic wind tunnel shown in the following schematic.  Air is the working fluid and the 
test section area is constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. What is the design Mach number of the test section? 
 
SOLUTION: 
 
The test section design Mach number may be found using the isentropic sonic area ratio and choosing the 
supersonic test section Mach number (case 4 in the diagram above), 

  Þ  MaTS = 2.50. (1) 

Note that at design conditions, the throat Mach number is one. 
 
 
b. What is the mass flow rate through the wind tunnel at design conditions? 
 
SOLUTION: 
 
The flow through the wind tunnel will be choked at design conditions, with a mass flow rate of, 

  Þ   = 23.3 kg/s, (2) 

where A* = AT. 
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c. What is the maximum back pressure at which the throat will reach sonic conditions? 
 
SOLUTION: 
 
When the throat just reaches sonic conditions (case 3 in the diagram above), the throat area will equal the 
sonic area (A* = AT) and the exit Mach number may be found using the isentropic sonic area ratio since the 
flow through the entire converging-diverging nozzle will be subsonic (no shock waves), 

  Þ  MaE = 0.2263. (3) 

The exit pressure may be found from this Mach number using the isentropic stagnation pressure ratio, 

  Þ  pE/p0 = 0.9650 Þ pE = 96.5 kPa (abs), (4) 

using p0 = 100 kPa (abs).  Since the exit Mach number is subsonic, the exit and back pressures are equal.  
Hence, 

pB = pE = 96.5 kPa (abs). (5) 
 
 
d. Assume a shock wave stands in the diverging section where the area is 0.1688 m2.  What is the back 

pressure at these conditions? 
 
SOLUTION: 
 
The Mach number just upstream of the shock wave may be found using the isentropic sonic area ratio since 
the flow leading up to the shock wave is isentropic and the throat area is at sonic conditions (since shock 
waves only form in supersonic flows, case 5 in the diagram shown above), 

  Þ  Ma1 = 2.00. (6) 

The stagnation pressure ratio and sonic area ratio across the shock are, 

Þ p02/p01 = A*1/ A*2 = 0.7209. (7) 

The flow downstream of the shock wave is isentropic and subsonic.  Thus, the pressure at the exit may be 
found 

 Þ  MaE = 0.3240. (8) 

The exit pressure may be found from the isentropic stagnation pressure ratio downstream of the shock and 
the exit Mach number, 

 Þ  pTS/p02 = 0.9299. (9) 

Accounting for the change in stagnation pressure ratio across the shock, 

   Þ  pTS = 67.03 kPa (abs) (10) 

Since the exit is at a subsonic Mach number, the exit and back pressures are equal, 
pB = pE = 67.0 kPa (abs). (11) 
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