

Compressible Flow - Converging-Diverging Nozzles

For air:

$$
k=1.4, R=287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K})=53.3\left(\mathrm{ft} \cdot \mathrm{l} \mathrm{~b}_{\mathrm{f}}\right) /\left(\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{degR}\right)=1716 \mathrm{ft}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{degR}\right)
$$

1D, steady, adiabatic flow of a perfect gas with no work other than pressure work
$T\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)=$ constant
$\frac{T}{T_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{-1}$ and $\frac{T^{*}}{T_{0}}=\left(1+\frac{k-1}{2}\right)^{-1}$
$\frac{c}{c_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{-\frac{1}{2}}$ and $\frac{c^{*}}{c_{0}}=\left(1+\frac{k-1}{2}\right)^{-\frac{1}{2}}$

1D, steady, isentropic flow of a perfect gas with no work other than pressure work
$\frac{p}{p_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{\frac{k}{1-k}}$ and $\frac{p^{*}}{p_{0}}=\left(1+\frac{k-1}{2}\right)^{\frac{k}{1-k}} \quad\left(\right.$ for air $\left.\left(k_{\text {air }}=1.4\right), p^{*} / p_{0}=0.5283\right)$
$\frac{\rho}{\rho_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{\frac{1}{1-k}}$ and $\frac{\rho^{*}}{\rho_{0}}=\left(1+\frac{k-1}{2}\right)^{\frac{1}{1-k}}$
$\frac{A}{A^{*}}=\frac{1}{\mathrm{Ma}}\left(\frac{1+\frac{k-1}{2} \mathrm{Ma}^{2}}{1+\frac{k-1}{2}}\right)^{\frac{k+1}{2(k-1)}}$
$\dot{m}_{\text {choked }}=\left(1+\frac{k-1}{2}\right)^{\frac{k+1}{2(1-k)}} p_{0} \sqrt{\frac{k}{R T_{0}}} A^{*}$

Normal Shock Relations

$\mathrm{Ma}_{2}^{2}=\frac{(k-1) \mathrm{Ma}_{1}^{2}+2}{2 k \mathrm{Ma}_{1}^{2}-(k-1)}$
$\frac{T_{2}}{T_{1}}=\left[2+(k-1) \mathrm{Ma}_{1}^{2}\right]\left[\frac{2 k \mathrm{Ma}_{1}^{2}-(k-1)}{(k+1)^{2} \mathrm{Ma}_{1}^{2}}\right]$
$\frac{\rho_{2}}{\rho_{1}}=\frac{V_{1}}{V_{2}}=\frac{(k+1) \mathrm{Ma}_{1}^{2}}{(k-1) \mathrm{Ma}_{1}^{2}+2}$
$\frac{p_{2}}{p_{1}}=\frac{2 k \mathrm{Ma}_{1}^{2}}{k+1}-\frac{k-1}{k+1}$
$\frac{T_{02}}{T_{01}}=1$
$\frac{p_{02}}{p_{01}}=\frac{A_{1}^{*}}{A_{2}^{*}}=\frac{\rho_{02}}{\rho_{01}}=\left[\frac{\frac{k+1}{2} \mathrm{Ma}_{1}^{2}}{1+\frac{k-1}{2} \mathrm{Ma}_{1}^{2}}\right]^{\frac{k}{k-1}}\left[\frac{2 k \mathrm{Ma}_{1}^{2}}{k+1}-\frac{k-1}{k+1}\right]^{\frac{1}{1-k}}$
$s_{2}-s_{1}=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}}$

Compressible Flow - Converging-Diverging Nozzles

