Compressible Flow - Isentropic Flow with Area Change

Compressible Flow - Isentropic Flow with Area Change

1D, steady, adiabatic flow of a perfect gas with no work other than pressure work

$$
\begin{array}{ll}
\frac{T}{T_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{-1} & \frac{T^{*}}{T_{0}}=\left(1+\frac{k-1}{2}\right)^{-1} \\
\frac{c}{c_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{-\frac{1}{2}} & \frac{c^{*}}{c_{0}}=\left(1+\frac{k-1}{2}\right)^{-\frac{1}{2}}
\end{array}
$$

1D, steady, isentropic flow of a perfect gas with no work other than pressure work
$\frac{p}{p_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{\frac{k}{1-k}}$
$\frac{p^{*}}{p_{0}}=\left(1+\frac{k-1}{2}\right)^{\frac{k}{1-k}}$
$\left.\frac{p^{*}}{p_{0}}\right|_{\substack{\text { for air } \\(k=1.4)}}=0.5283$
$\frac{\rho}{\rho_{0}}=\left(1+\frac{k-1}{2} \mathrm{Ma}^{2}\right)^{\frac{1}{1-k}}$
$\frac{\rho^{*}}{\rho_{0}}=\left(1+\frac{k-1}{2}\right)^{\frac{1}{1-k}}$

From conservation of mass for a 1 D , steady flow:

$$
\rho V A=\text { constant } \Rightarrow \frac{d \rho}{\rho}+\frac{d V}{V}+\frac{d A}{A}=0
$$

From Bernoulli's equation (linear momentum equation) for a gas (neglect gravitational forces):

$$
\frac{d p}{\rho}+V d V=0
$$

Combine conservation of mass with Bernoulli's equation and the definition of the speed of sound $\left(c^{2}=(\partial p / \partial \rho)_{s}\right)$ and the Mach number $(\mathrm{Ma}=V / c):$

$$
\left(\mathrm{Ma}^{2}-1\right) \frac{d V}{V}=\frac{d A}{A}
$$

Compressible Flow - Isentropic Flow with Area Change

From Conservation of Mass for a 1D, steady flow, combined with the isentropic relations:

$$
\frac{A}{A^{*}}=\frac{1}{\mathrm{Ma}}\left(\frac{1+\frac{k-1}{2} \mathrm{Ma}^{2}}{1+\frac{k-1}{2}}\right)^{\frac{k+1}{2(k-1)}}
$$

