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Figure 2 | Scaling aquatic locomotion: measurements. a, Data from
amphibians, larvae, fish, marine birds and mammals show that the scaled
speed of the organism Re=UL/⌫ varies with the scaled frequency of the
oscillatory propulsor Sw=!AL/⌫ according to equations (1) and (2) over
eight decades. Data fit for the laminar regime yields Re=0.03Sw1.31 with
R2 =0.95, and for the turbulent regime yields Re=0.4Sw1.02 with
R2 =0.99. b, The Strouhal number St= fA/U, with f =!/2⇡ , depends
weakly on Reynolds number St⇠Re�1/4 for Sw< 104 (blue) and is
independent for Sw> 104 (red), consistent with our scaling relationships
and earlier observations30.

Because aquatic organisms live in water, testing the dependence
of our scaling relationships on viscosity requires manipulating
the environment. Although this has been done on occasion27

and is consistent with our scaling relations (Supplementary
Information), numerical simulations of the Navier–Stokes
equations coupled to the motion of a swimming body allow us to
test our power laws directly by varying Sw via the viscosity ⌫ only
(Supplementary Information). In Fig. 3, we show the results for
two-dimensional anguilliform swimmers28,29. The data from our
numerical experiments straddle both sides of the crossover from the
laminar to the turbulent regime and are in quantitative agreement
with ourminimal scaling theory, and our simple estimate for Recritical.
To further challenge our theoretical scaling relationships, in Fig. 3,
we plot the results of three-dimensional simulations performed by
various groups using di�erent numerical techniques19,22,24,28; they
also collapse onto the same power laws (details in Supplementary
Information). The agreementwith both two- and three-dimensional
numerical simulations, which are not a�ected by environmental
and behavioural vagaries, gives us further confidence in
our theory.

Traditionally, most studies of locomotion use the Strouhal
number St = !A/U , a variable borrowed from engineering, to
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Figure 3 | Scaling aquatic locomotion: simulations. a, Two- and
three-dimensional direct numerical simulations of swimming creatures
confirm equations (1) and (2). Circles correspond to two-dimensional
simulations, while squares correspond to three-dimensional simulations
(details about sources and numerical techniques can be found in the
Supplementary Information). In the case of two-dimensional simulations, a
data fit for the laminar regime yields Re=0.04Sw4/3 with R2 =0.99, and
for the turbulent regime yields Re=0.43Sw with R2 =0.99. Remarkably,
three-dimensional simulations performed by various groups19,22,24,28 and
with di�erent numerical techniques (Supplementary Information) confirm
our scaling relations (Re=0.02Sw4/3 with R2 = 1.00, and Re=0.26Sw with
R2 =0.99). b, For several Sw we display the vorticity fields (red—positive,
blue—negative) generated by a two-dimensional anguilliform swimmer
initially located on the rightmost side of the figure.

characterize the underlying dynamics. Although this is reasonable
for many engineering applications such as vortex shedding,
vibration and so on, in a biological context it is worth emphasizing
that St confounds input A–! and output U variables, captures
only one length scale by assuming A⇠ L, and does not account
for varying fluid environments characterized by ⌫. For biological
locomotion, Sw is a more natural variable as it captures the
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Figure 1 | Aquatic swimming. a, The organisms considered here (Supplementary Information) span eight orders of magnitude in Reynolds number and
encompass larvae (from mayfly to zebrafish), fish (from goldfish, to stingrays and sharks), amphibians (tadpoles), reptiles (alligators), marine birds
(penguins) and large mammals (from manatees and dolphins to belugas and blue whales). Blue fish sketch by Margherita Gazzola. b, Swimmer of length L
is propelled forward with velocity U by pushing a bolus of water14,20,24 through body undulations characterized by tail beat amplitude A and frequency !.
c, Thrust and drag forces on a swimmer. Thrust is the reaction force associated with accelerating (A!2) the mass of liquid per unit depth ⇢L2 weighted by
the local angle A/L (therefore ⇢LA may be understood as the mass of liquid channelled downstream). For laminar boundary layers, the drag is dominated
by viscous shear (skin drag), whereas for turbulent boundary layers, the drag is dominated by pressure (pressure drag).

As most species when swimming at high speeds maintain an
approximately constant value of the specific tail beat amplitudeA/L
(refs 8,11), relation (2) reduces toU/L⇠ f , providing a mechanistic
basis for Bainbridge’s empirical relation.

In Fig. 2a, we plot all data from over 1,000 di�erent
measurements compiled from a variety of sources (Supplementary
Information) in terms of Re and Sw, for fish (from zebrafish
larvae to stingrays and sharks), amphibians (tadpoles), reptiles
(alligators), marine birds (penguins) and large mammals (from
manatees and dolphins to belugas and blue whales). The organisms
varied in size from 0.001 to 30m, while their propulsion frequency
varied from 0.25 to 100Hz. The dimensionless numbers we use
to scale the data provides a natural division of aquatic organisms
by size, with fish larvae at the bottom left, followed by small
amphibians, fish, birds, reptiles, and large marine mammals at the
top right. We see that the data, which span nearly eight orders of
magnitude in the Reynolds number, are in agreement with our
predictions, and show a natural crossover from the laminar power
law (1) to the turbulent power law (2) at a Reynolds number of
approximately Re' 3, 000. To understand this, we note that the
skin friction starts to be dominated by the pressure drag when

the thickness of the laminar boundary layer is comparable to half
the oscillation amplitude. Therefore, a minimal estimate for the
critical Reynolds number Recritical associated with the laminar–
turbulent transition is given by the relation � ' A/2. For a flat
plate26 � = 5

p
⌫L/U and given a typical value of A/L= 0.2, we

obtain Recritical ' (10L/A)2 = 2,500, which is in agreement with
experimental data.

Naturally, some organisms do not hew exactly to our scaling
relationships. Indeed, sirenians (manatees) slightly fall below the
line, whereas anuran tadpoles lie slightly above it (Supplementary
Information). We ascribe these di�erences to intermittent modes
of locomotion involving a combination of acceleration, steady
swimming and coasting that these species often use. Other reasons
for the deviations could be related to di�erent gaits in which part or
the entire body is used, as in carangiform or anguilliform motion.
Moreover, morphological variations associated with the body, tail
and fins may play a role by directly a�ecting the hydrodynamic
profile, or indirectly bymodifying the gaits. However, the agreement
with our minimal scaling arguments suggests that the role of
these specifics is secondary, given the variety of shapes and gaits
encompassed in our experimental data set.
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Boundary Layer Thickness Definitions 
 
1. (99%) boundary layer thickness, d: 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

2. displacement thickness, dD  or d*: 
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Example: 
 
Consider the mass flow rate between two parallel plates in which a boundary layer has formed: 
 
 
 
 
 
 
 
 
 
 
 
 
Determine the mass flow rate through the channel in terms of the displacement thickness. 
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3. momentum thickness, dM or Q: 
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Example: 
 
Consider the boundary layer flow over a flat plate. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Determine the drag acting on the plate in terms of the momentum thickness. 
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