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(b) Isentropic case: Recall that for an ideal gas undergoing an isentropic process,

0 = cp(T )
dT

T
�R

dp

p
, (5.352)

dp =
cp(T )

R
(⇢RT )

dT

T
, (5.353)

dp = ⇢cp(T )dT. (5.354)

Thus, ˆ
dp

⇢
=

ˆ
cp(T )dT =

ˆ
dh = �h, (5.355)

where h is the specific enthalpy. If the ideal gas has constant specific heats, i.e., is a “perfect”
gas, then, �h = cp�T and, ˆ

dp

⇢
= cp�T. (5.356)

5.13.1. Another Approach to Deriving Bernoulli’s Equation

Figure 5.32. The di↵erential control volume used to derive Bernoulli’s Equation.

We can also derive Bernoulli’s Equation using the Linear Momentum Equations and Conservation of Mass
applied to a di↵erential control volume as shown in Figure 5.32. Note that the control volume shown in the
figure follows the streamlines. In the following analysis, we’ll make the following simplifying assumptions:

(1) steady flow,
(2) inviscid flow, and
(3) incompressible fluid.

First apply Conservation of Mass to the control volume,

d

dt

ˆ
CV

⇢dV +

ˆ
CS

(⇢urel · dA) = 0, (5.357)

where,
d

dt

ˆ
CV

⇢dV = 0 (steady flow), (5.358)
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= ⇢V dA+ ⇢AdV +H.O.T.s (5.360)

Note that there’s no flow across the streamlines. Substituting these expressions into Conservation of Mass
gives,

V dA = �AdV. (5.361)

Now apply the Linear Momentum Equation to the same control volume in the streamline direction,

d

dt

ˆ
CV

us⇢dV +

ˆ
CS

us (⇢urel · dA) = FB,s + FS,s, (5.362)

where,
d

dt

ˆ
CV

us⇢dV = 0 (steady flow), (5.363)
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= 2⇢V AdV + ⇢V 2dA+H.O.T.s, (5.365)

FB,s = ⇢dsA(�g sin ✓) = �⇢Ag ds sin ✓| {z }
=dz

= �⇢Agdz, (5.366)
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= �Adp+H.O.T.s, (5.368)

Combining these terms together into the Linear Momentum Equation,

2⇢V AdV + ⇢V 2dA = �⇢Agdz �Adp. (5.369)

Now substitute the result from Conservation of Mass into the result from the Linear Momentum Equation
and simplify,

2⇢V AdV + ⇢V 2dA| {z }
=�⇢V AdV

= �⇢Agdz �Adp, (5.370)

dp

⇢
+ V dV + gdz = 0. (5.371)

We can integrate this equation along the streamline to get,

p

⇢
+

1

2
V 2 + gz = constant (5.372)

Again, it’s important to review the assumptions builtin to the derivation of Eq. (5.372):

(1) steady flow,
(2) inviscid flow,
(3) incompressible fluid, and
(4) flow along a streamline.
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A water tank has an orifice in the bottom of the tank: 
 
 
 
 
 
 
 
 
 
 

 
The height, h, of water in the tank is kept constant by a supply of water which is not shown.  A jet of water 
emerges from the orifice; the cross-sectional area of the jet, A(y), is a function of the vertical distance, y.  
Neglecting viscous effects and surface tension, find an expression for A(y) in terms of A(0), h, and y.  
 
 
SOLUTION: 
 
Apply Conservation of Mass to the following CV: 
 
 
 
 
 
 
 
 
 
 
 

 

where, 

  (The flow is steady.) 

 

Substitute and simplify, 

 (1) 

 
Now apply Bernoulli’s Equation from point 1 to point 0 and from point 1 to point 2, 

 

where, 
  (These points are all at free surfaces.) 

 and V0 and V2 are related through Eq. (1). 
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Substitute and simplify, 
 

 

The first two equations in the previous expression state that, 
 (2) 

Equation (2) combined with the second two equations gives, 
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A person holds their hand out of a car window while driving through still air at a speed of 
Vcar.  What is the maximum pressure on the person’s hand? 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Change the frame of reference so that the car is stationary and the air approaches the car 
at a velocity, Vcar.  Apply Bernoulli’s equation, neglecting elevation differences, along a 
streamline from a point far upstream of the car to the stagnation point on the person’s 
hand (this will be the point at which the pressure is the greatest). 
 
 
 
 
 
 
 
 

 

 (1) 
   
patm + 1

2 ρVcar
2 = p0 +

1
2 ρV0

2

=0
!

  p0 = pmax = patm + 1
2 ρVcar
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Vcar 
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V=0, p0 
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Water is siphoned from a large tank through a constant diameter hose as shown in the figure.  Determine 
the maximum height of the hill, Hhill, over which the water can be siphoned without cavitation occurring.  
Assume that the vapor pressure of the water is pv, the height of the water free surface in the tank is Htank, 
and the vertical distance from the end of the hose to the base of the tank is Hend. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hend 

Htank 

Hhill 

discharges into atmosphere 

constant diameter pipe 
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Hhill 
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A 
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Apply Bernoulli’s equation along a streamline from the tank free surface (point A) to the end of the tube 
(point C). 

 (1) 

where 
 

  (free surface of a large tank) 
 

Solving Eqn. (1) for VC gives: 
 (2) 

 
Now apply Bernoulli’s equation along a streamline from the tank free surface (point A) to the top of the 
tube (point B).  Note that the velocity everywhere within the tube will be equal to VC (from conservation of 
mass). 

 (3) 

where 
 

  
(From Eqn. (3) we see that the pressure at point B will decrease as Hhill increases so we should use 
the smallest allowable pressure at point B to determine the maximum Hhill.) 

  (free surface of a large tank) 

  (from conservation of mass) 

 
 
Substituting into Eqn. (3) and solving for Hhill gives: 

 

 (4) 
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You are to design Quonset huts for a military base.  The design wind speed is U¥ = 30 m/s and the free-
stream pressure and density are p¥ = 101 kPa and r¥ = 1.2 kg/m3, respectively.  The Quonset hut may be 
considered to be a closed (no leaks) semi-cylinder with a radius of R = 5 m which is mounted on tie-down 
blocks as shown in the figure. The flow is such that the velocity distribution over the top of the hut is 
approximated by: 

 

The air under the hut is at rest. 
 
 
 
 
 
 
 
 
 
a. What is the pressure distribution over the top surface of the Quonset hut? 
b. What is the net lift force acting on the Quonset hut due to the air?  Don’t forget to include the effect 

of the air under the hut. 
c. What is the net drag force acting on the hut?  (Hint:  A calculation may not be necessary here but 

some justification is required.)  
 
SOLUTION: 
 
Apply Bernoulli’s equation over a streamline adjacent to the upper surface of the hut to determine the 
pressure distribution.  Neglect elevation effects since the fluid is a gas and the elevation differences are 
small. 

 (1) 

where 
 

 

 

  ( ) 

 

Substitute and solve for the pressure on the hut’s upper surface. 
 

 

 (2) 

where Cp is known as a “pressure coefficient.” 
 
The pressure under the hut will be the stagnation pressure.  It can also be found by applying Bernoulli’s 
equation and noting that under the hut the velocity is zero. 
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The net lift force is determined by integrating the vertical component of the pressure forces over the entire 
surface of the hut. 
 
 
 
 
 
 
 
 

    (Note that positive lift is directed upwards.) (4) 

where p0 is the stagnation pressure.  

 

    

where CL is a “lift coefficient.” 

 

 (5) 

 
The net drag force is determined by integrating the horizontal component of the pressure forces over the 
entire surface of the hut. 

     (6) 

 

    (7) 
 

We could have also anticipated that the drag would be zero since the velocity field is symmetric between 
the upstream and downstream sides of the hut.  
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An air cushion vehicle is supported by forcing air into the chamber created by a skirt around the periphery 
of the vehicle as shown.  The air escapes through the 3 in. clearance between the lower end of the skirt and 
the ground (or water).  Assume the vehicle weighs 10,000 lbf and is essentially rectangular in shape, 30 by 
50 ft.  The volume of the chamber is large enough so that the kinetic energy of the air within the chamber is 
negligible.  Determine the flowrate, Q, needed to support the vehicle.   
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The weight of the vehicle is supported by the increased pressure within the chamber.    
 
 
 
 
 
 
 
A simple force balance gives: 

 (1) 

Note that we have neglected the downward momentum flux of the air caused by the fan since it will be 
negligible when compared to the weight of the vehicle. 
 
The pressure within the chamber, p1, can be found using Bernoulli’s equation applied along the streamline 
shown in the previous figure. 

 (2) 

where 
  

   (large chamber) 

  (Elevation differences are negligible, especially since a gas is being considered.) 

Substitute and simplify. 

 (3) 

Substitute Eqn. (3) into Eqn. (1) and solve for the flow rate Q. 
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Substitute the given parameters. 
W = 10000 lbf = 322,000 lbmft/s2 
Askirt = (3 in.)(ft/12 in.)[2(30 ft + 50 ft)] = 40 ft2   (rectangular cross-section) 
r = 7.68e-2 lbm/ft3 
Aprojected = (30 ft)(50 ft) = 1500 ft2   (rectangular cross-section) 
Þ Q = 2990 ft3/s 
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Oil flows through a contraction with circular cross-section as shown in the figure below.  A manometer, 
using mercury as the gage fluid, is used to measure the pressure difference between sections 1 and 2 of the 
pipe.  Assuming frictionless flow, determine: 
 
a. the pressure difference, p1-p2, between sections 1 and 2, and 
b. the mass flow rate through the pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the pressure difference using the manometer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 (1) 

( )2 1 oil Hg oilp p g H x h gh gxr r r= + + + - -
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Use the given parameters. 
rH20 = 1000 kg/m3 
g = 9.81 m/s2 
SGHg = 13.6 
h = 100e-3 m 
SGoil = 0.9 
H = 600e-3 m 
Þ p1 - p2  = 7.2 kPa 
 

Now apply Bernoulli’s equation along a streamline from 1 to 2 to determine the mass flow rate. 

 

where 
  (found previously) 

  

 
Substitute and simplify. 

 

 (2) 

 
Use the given parameters. 

rH20 = 1000 kg/m3 
SGoil = 0.9 
g = 9.81 m/s2 
H = 600e-3 m 
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D2 = 100e-3 m 
p1 - p2  = 7200 N/m2 
Þ  = 37.5 kg/s 
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If the approach velocity is not too large, a hump of height, H, in the bottom of a water channel will cause a 
dip of magnitude Dh in the water level.  This depression in the water can be used to determine the flow rate 
of the water.  Assuming no losses and that the incoming flow has a depth, D, determine the volumetric flow 
rate, Q, as a function of Dh, H, D, and g (the acceleration due to gravity). 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Assume steady, incompressible, inviscid flow with uniform velocity profiles at the inlet and outlet of the 
control volume. 
 
 
 
 
 
 
 
 
 
 
Apply Bernoulli’s Equation along a streamline on the free surface from point A to point B. 

 (1) 

where 
 (2) 

  and   (3) 

  and   (4) 
Substitute and simplify. 

 (5) 
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In which of the following scenarios is applying the following form of Bernoulli’s equation: 

 

from point 1 to point 2 valid? 
 
 
a.  
 
 
 
 
 
 
 
 
 
b.  
 
 
 
 
 
 
c. 
 
 
 
 
 
 
 
d. 
 
 
 
 
 
e. 
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SOLUTION: 
 
Bernoulli’s equation, as written in the problem statement, can be used in NONE of the scenarios presented. 
 
a. The flow is rotational at the interface between the vertical and horizontal channels and, hence, 

Bernoulli’s equation cannot be applied across the flow streamlines. 
 
b. Since Ma > 0.3, the flow should be considered compressible.  The given form of Bernoulli’s equation 

is valid only for incompressible flows.  An alternate form of Bernoulli’s equation that takes 
compressibility effects into account could be used, however. 

 
c.   The pump between points 1 and 2 adds energy to the flow and, hence, the constant in Bernoulli’s 

equation changes across the pump.  The Extended Bernoulli’s Equation (aka energy equation) could be 
used in this scenario instead of the given form of Bernoulli’s equation. 

 
d. Bernoulli’s equation assumes inviscid flow.  Viscous effects are significant in boundary layers and 

thus Bernoulli’s equation may not be used. 
 
e. The given form of Bernoulli’s equation assumes steady flow.  The oscillating U-tube is unsteady and 

the given Bernoulli’s equation cannot be used.  Note that it is possible to derive an unsteady form of 
Bernoulli’s equation that could be used in the given situation.  

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 617 2022-09-16



  bernoulli_12 

Page 1 of 2 

The device shown in the figure below is proposed for measuring the exhalation pressure and volume flow 
rate of a person (the device is known as a “peak flow meter”).  A circular tube, with inside radius R, has a 
slit of width w running down the length of it (a cut-out in the cylinder).  Inside the tube is a lightweight, 
freely moving piston attached to a linear spring (with spring constant k).  The equilibrium position of the 
piston is at x = 0 where the slit begins. 
 
 
 
 
 
 
 
 
 
Derive equations for: 
a. the volumetric flow rate, Q, and  
b. the gage pressure in the tube, pgage, 
in terms of (a subset of) the piston displacement, x, as well as the tube radius, R, slit width, w, spring 
constant, k, and the properties of air.  Assume that the slit width, w, is so small that the outflow area is 
much smaller than the tube’s cross-sectional area, pR2, even at the piston’s full extension. 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown below. 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

  (at steady state) (2) 

 (3) 

Substitute and simply to get: 
 (4) 

 (5) 
where Vout is the speed of the air flowing out of the slit.  This speed may be found by applying Bernoulli’s 
equation from a point located within the tube (1) and a point just at the slit exit (2).  

 (6) 

where 
p1 = pgage (7) 
p2 = 0 (patm,gage = 0) (8) 
V1 = Q/(pR2)  (9) 
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V2 = Vout (10) 
Since the slit area is much smaller than the outlet area, V1 << V2 , Eqn. (6) becomes 

. (11) 

Substituting into Eqn. (5) gives: 

 (12) 

 
The pressure, pgage, may be found by balancing forces on the piston: 

 (13) 

 (14) 

Note that we could have used the linear momentum equation in the x-direction on the same control volume 
to arrive at this expression (see below).  

 
Combining Eqns. (12) and (14) gives: 

 (15) 

 
Thus, by measure the displacement of the piston on the simple device shown in the figure, lung functions 
such as pressure and volumetric flow rate can be easily determined. 
 
 
Note that we could have also worked out Eq. (14) of this problem using the linear momentum equation in 
the x-direction applied to the same control volume. 

 (16) 

where 

  (steady flow) (17) 

  (no x-momentum flux out through side) (18) 

 (19) 

  (20) 
Substitute and simplify. 

 (21) 

Substituting from Eq. (12) , 

  (22) 

 (23) 

But since wx ≪ pR2,  

  which is the same as Eq. (14)! (24) 
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Water 1 m deep is flowing steadily at 10 m/s in a channel 4 m wide.  The channel drops 3 m at 30 deg, and 
simultaneously narrows to 2.5 m as shown in the accompanying sketch.  
 
Determine the two possible water depths at downstream station B.  Neglect all losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass to the control volume shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 

   (steady flow) (2) 

 (3) 

Substitute and simplify noting that the water density remains constant. 

  Þ    Þ   (4) 

 
Now apply Bernoulli’s equation along the free surface of the stream from point A to point B. 

 (5) 

where 
pA = pB = patm (6) 
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 (7) 

Substitute Eq. (4) and solve for zB. 

 (8) 

 (9) 

 (10) 

 (11) 

Using the given parameters: 
VA = 10 m/s 
g = 9.81 m/s2 
zA = 1 m 
wA = 4 m 
wB = 2.5 m 

Eq. (11) may be written as, 
 (12) 

 
Solve Eq. (12) numerically to get, 

zB = 1.728 m, 5.695 m, -1.326 m (13) 
 

Thus, the two possible depths at location B are:  1.7 m and 5.7 m.   (14) 
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A Venturi pump is used in the design of a carburetor, a device used to create a fuel-air mixture to be fed 
into the cylinder of an internal combustion engine.  Simplified schematics of a carburetor are shown in the 
following figures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The air, which may reasonably be assumed to be incompressible, has a density ρA and the liquid fuel has 
density ρF.   The fuel reservoir is located a distance H below the inlet port into the Venturi.  The inlet air is 
at atmospheric pressure as is the free surface of the fuel reservoir.  The air inlet cross-sectional area is A1 
and the Venturi throat area is A2.  The fuel line cross-sectional area is AF. 
 
If the desired air-to-fuel mass flow rate ratio at the outlet of the carburetor is R (= ), determine the 
required ratio A1/A2 in terms of (a subset of) the air-to-fuel ratio R, air density rA, the fuel density rF, the 
inlet air mass flow rate , the acceleration due to gravity g, the height from the fuel reservoir to the 
Venturi throat H, the fuel pipe area AF, and the air inlet area A1. 
 
 
  

  mA mF

  mA

Image from:  http://hdabob.com/wp-
content/uploads/2009/10/carburetor.jpg 

g 

AF 
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SOLUTION: 
 
Apply Bernoulli’s equation from 1 to 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p1 = patm  and  p2 = ? (2) 

  and   (3) 

Dz is negligible compared to the other terms in B.E. since the fluid is a gas (4) 
 
Substitute and simplify. 

 (5) 

 
Apply Bernoulli’s equation from 3 to 4. 

 (6) 

where 
p3 = patm  and  p4 = p2 (7) 

  and   (8) 

Dz = z4 – z3 = H (9) 
 
Substitute and simplify. 

 (10) 

 
Combine Eqs. (5) and (10) and solve for A1/A2. 

 (11) 

 (12) 
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 (13) 

 (14) 

  or   (15) 

 
 
For a typical carburetor, 

rF = 770 kg/m3  (gasoline) 
rA = 1.23 kg/m3 (air) 
A1 = 1.34*10-3 m2  (D1 = 4.13cm = 1 5/8 in.) 
AF = 1.70*10-6 m2 (DF =  1.47 mm = 0.058 in.) 
R = 14.7  (ideal fuel to air ratio for gasoline) 
g = 9.81 m/s2 
H = 2.00*10-2 m (= 2 cm) 

 = 0.290 kg/s  (500 cfm @ 1.23 kg/m3) 
Þ  A1/A2 = 2.36  Þ  D2 = 2.69 cm 
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