5.7. Acceleration of a Fluid Particle in Streamline Coordinates

Often it's helpful to use streamline coordinates (s, n) instead of Cartesian coordinates (x, y) when describing the motion of a fluid particle. Let's determine a fluid particle's acceleration parallel (s-direction) and normal (n-direction) to a streamline for a steady, 2D flow. Consider Figure 5.19.

Figure 5.19. An illustration of a streamline coordinate system.
Notes:
(1) The coordinates (s, n) are just like (x, y) coordinates. They specify the location of the fluid particle.
(2) Lines of constant s and n are perpendicular.
(3) The unit vector $\hat{\boldsymbol{s}}$ points in the direction tangent to the streamline.
(4) The unit vector $\hat{\mathbf{n}}$ points toward the center of curvature of the streamline.

The acceleration of the fluid particle is,

$$
\begin{equation*}
\boldsymbol{a}=\frac{D \boldsymbol{u}}{D t} \tag{5.176}
\end{equation*}
$$

where $\boldsymbol{u}=u \hat{\boldsymbol{s}}$. Substituting and expanding gives,

$$
\begin{equation*}
\boldsymbol{a}=\frac{D(u \hat{\boldsymbol{s}})}{D t}=\hat{\boldsymbol{s}} \frac{D u}{D t}+u \frac{D \hat{\boldsymbol{s}}}{D t} \tag{5.177}
\end{equation*}
$$

Now expand the Lagrangian derivative terms keeping in mind that $u=u(s, n)$,

$$
\frac{D u}{D t}=\underbrace{\frac{\partial u}{\partial t}}_{\begin{array}{c}
=0, \tag{5.178}\\
\text { (steady) }
\end{array}}+\underbrace{u_{n}}_{\begin{array}{c}
\text { (flow tangent } \\
\text { to streamline) }
\end{array}} \frac{\partial u}{\partial n}+\underbrace{u_{s}}_{\begin{array}{c}
\text { (flow tangent } \\
\text { to streamline) }
\end{array}} \frac{\partial u}{\partial s}=u \frac{\partial u}{\partial s}
$$

and,

$$
\frac{D \hat{\boldsymbol{s}}}{D t}=\underbrace{}_{\begin{array}{c}
=0, \tag{5.179}\\
\text { (steady) }
\end{array} \underset{\begin{array}{c}
\text { (flow tangent } \\
\text { to streamline) }
\end{array}}{\frac{\partial \hat{\boldsymbol{s}}}{\partial t}}+\underbrace{u_{n}}_{\substack{\text { (flow tangent } \\
\text { to streamline) }}} \frac{\partial \hat{\boldsymbol{s}}}{\partial n}+\underbrace{u_{s}} \frac{\partial \hat{\boldsymbol{s}}}{\partial s}=u \frac{\partial \hat{\boldsymbol{s}}}{\partial s} .}
$$

To determine how $\hat{\boldsymbol{s}}$ varies with the s-coordinate, consider Figure 5.20. Note that the triangles AOB and A'O'B' are similar. Hence,

$$
\begin{equation*}
\frac{d s}{R}=\underbrace{\frac{|d \hat{\boldsymbol{s}}|}{|\hat{\boldsymbol{s}}|}}_{=1}=|d \hat{\boldsymbol{s}}| \Longrightarrow \frac{|d \hat{\boldsymbol{s}}|}{d s}=\frac{1}{R} . \tag{5.180}
\end{equation*}
$$

Figure 5.20. Illustration showing how the change in the $\hat{\boldsymbol{s}}$ direction varies with the s coordinate.

Also, as $d s \rightarrow 0, d \hat{\boldsymbol{s}}$ points in the $\hat{\mathbf{n}}$ direction so,

$$
\begin{equation*}
\frac{d \hat{s}}{d s}=\frac{1}{R} \hat{\mathbf{n}} \tag{5.181}
\end{equation*}
$$

Substituting Eq. (5.181) into Eq. (5.179),

$$
\begin{equation*}
\frac{D \hat{s}}{D t}=\frac{u}{R} \hat{\mathbf{n}} \tag{5.182}
\end{equation*}
$$

Substituting Eq. (5.182) and Eq. (5.178) into Eq. (5.177) gives the fluid particle acceleration in streamline coordinates,

$$
\begin{equation*}
\boldsymbol{a}=\underbrace{\left(u \frac{\partial u}{\partial s}\right)}_{\substack{\text { tangential } \\ \text { acceleration }}} \hat{\boldsymbol{s}}+\underbrace{\left(\frac{u^{2}}{R}\right)}_{\substack{\text { normal } \\ \text { acceleration }}} \hat{\mathbf{n}} . \tag{5.183}
\end{equation*}
$$

Water flows through the curved hose shown below with an increasing speed of $u=10 t \mathrm{ft} / \mathrm{s}$, where t is in seconds. For $t=2 \mathrm{~s}$ determine:
a. the component of acceleration along the streamline,
b. the component of acceleration normal to the streamline, and
c. the net acceleration (magnitude and direction).

SOLUTION:

The acceleration component in the streamline direction is,

$$
\begin{equation*}
a_{s}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial s} \tag{1}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=10 \mathrm{ft} / \mathrm{s}^{2} \quad \text { (The flow is unsteady.) } \\
& \frac{\partial u}{\partial s}=0 \quad \text { (The flow velocity doesn't change with respect to position along the streamline.) }
\end{aligned}
$$

$$
\therefore a_{s}=10 \mathrm{ft} / \mathrm{s}^{2}
$$

The acceleration component normal to the streamline is,

$$
\begin{equation*}
a_{n}=\frac{u^{2}}{R} \tag{2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \frac{u^{2}}{R}=\frac{(10 * 2 \mathrm{ft} / \mathrm{s})^{2}}{20 \mathrm{ft}}=20 \mathrm{ft} / \mathrm{s}^{2} \quad(\text { The velocity is evaluated at } t=2 \mathrm{~s} .) \\
& \therefore a_{n}=20 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

The net acceleration is,

$$
\begin{aligned}
& \mathbf{a}=a_{n} \hat{\mathbf{n}}+a_{s} \hat{\mathbf{s}} \\
& \mathbf{a}=(20 \hat{\mathbf{n}}+10 \hat{\mathbf{s}}) \mathrm{ft} / \mathrm{s}^{2} \\
& |\mathbf{a}|=22.4 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

5.8. Euler's Equations in Streamline Coordinates

Recall from previous analyses (Section 5.6) that the differential equations of motion for a fluid particle in an inviscid flow in a gravitational field are,

$$
\begin{equation*}
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\rho \boldsymbol{g} \quad \underline{\text { Euler's Equations. }} \tag{5.184}
\end{equation*}
$$

For simplicity, further assume that we're dealing with a 2D, steady flow. Now write Eq. (5.184) in streamline coordinates (s, n) (Figure 5.21),

$$
\begin{array}{ll}
s-\text { direction: } & \rho a_{s}=-\frac{\partial p}{\partial s}+\rho g_{s} \\
n-\text { direction: } & \rho a_{n}=-\frac{\partial p}{\partial n}+\rho g_{n} \tag{5.186}
\end{array}
$$

Figure 5.21. A fluid particle in streamline coordinates.

Recall that in streamline coordinates (refer to the previous section),

$$
\begin{equation*}
a_{s}=u \frac{\partial u}{\partial s} \quad \text { and } \quad a_{n}=\frac{u^{2}}{R} \tag{5.187}
\end{equation*}
$$

so that Eqs. (5.185) and (5.186) become,

$$
\begin{align*}
u \frac{\partial u}{\partial s} & =-\frac{1}{\rho} \frac{\partial p}{\partial s}+g_{s} \tag{5.188}\\
\frac{u^{2}}{R} & =-\frac{1}{\rho} \frac{\partial p}{\partial n}+g_{n} \tag{5.189}
\end{align*}
$$

These are the 2D, steady Euler's Equations in streamline coordinates.
We can draw an important and very useful conclusion from Eq. (5.189). For a flow moving in a straight line $(R \rightarrow \infty)$ and neglecting gravity $\left(g_{n}=0\right)$ we have,

$$
\begin{equation*}
\frac{\partial p}{\partial n}=0 \tag{5.190}
\end{equation*}
$$

i.e., the pressure does not change normal to the direction of the flow! This result is very helpful when considering the pressure in a free jet (Figure 5.22). Since free jets typically have negligible curvature and gravitational effects, the pressure everywhere normal to the free jet will be the same!
Similarly, for a flow with parallel streamlines adjacent to a flat boundary (Figure 5.23), the pressure gradient normal to the flow is,

$$
\begin{equation*}
0=-\frac{1}{\rho} \frac{\partial p}{\partial n}+g \Longrightarrow \frac{\partial p}{\partial n}=\rho g \tag{5.191}
\end{equation*}
$$

Thus, the pressure normal to the flow varies hydrostatically.
Now consider flow in a bend, as shown in Figure 5.24. Here, in the $\hat{\mathbf{n}}$ direction,

$$
\begin{equation*}
\frac{u^{2}}{R}=-\frac{1}{\rho} \frac{\partial p}{\partial n} \Longrightarrow \frac{\partial p}{\partial n}=-\rho \frac{u^{2}}{R} \tag{5.192}
\end{equation*}
$$

Figure 5.22. Streamlines in a free jet with no gravity.

Figure 5.23. Streamlines for a flow parallel to a flat boundary.

Figure 5.24. Streamlines in a curved bend.

Thus, the pressure increases as one moves in the negative n direction. The largest pressure is on the outside of the bend while the smallest pressure is on the inside part of the bend. If the fluid is a liquid and the inside bend pressure reaches the vapor pressure of the liquid, cavitation will occur.

In the curved inlet section of a wind tunnel the velocity distribution has a streamline radius of curvature given by:

$$
r=R_{0} \frac{L}{2 y}
$$

As a first approximation, assume the air speed along each streamline is $20 \mathrm{~m} / \mathrm{s}$. Evaluate the pressure change from the center line of the tunnel to the wall (located at $y=L / 2$) if $L=150 \mathrm{~mm}$ and $R_{0}=0.6 \mathrm{~m}$.

SOLUTION:

Apply Euler's equation across the streamlines.

$$
\begin{equation*}
\frac{d p}{d r}=\rho \frac{V^{2}}{r} \tag{1}
\end{equation*}
$$

Note that in the channel:

$$
\begin{equation*}
y=\left(R_{0}+L / 2\right)-r \Rightarrow d y=-d r \tag{2}
\end{equation*}
$$

Substitute for the curvature radius and solve for the pressure difference.

$$
\begin{align*}
& -\frac{d p}{d y}=\rho \frac{V^{2}}{R_{0} \frac{L}{2 y}} \Rightarrow d p=-\frac{2 \rho V^{2}}{R_{0} L} y d y \tag{3}\\
& \int_{p=p_{y=0}}^{p=p_{y=L / 2}} d p=-\frac{2 \rho V^{2}}{R_{0} L} \int_{y=0}^{y=L / 2} y d y \tag{4}\\
& p_{y=L / 2}-p_{y=0}=-\frac{\rho V^{2} L}{4 R_{0}} \tag{5}
\end{align*}
$$

Using the given data:

$$
\begin{array}{ll}
\rho & =1.23 \mathrm{~kg} / \mathrm{m}^{3} \\
V & =20 \mathrm{~m} / \mathrm{s} \\
R_{0} & =0.6 \mathrm{~m} \\
L & =150 \mathrm{e}-3 \mathrm{~m} \\
\Rightarrow & p_{y=L / 2}-p_{\mathrm{y}=0}=-30.8 \mathrm{~Pa}
\end{array}
$$

The velocity distribution in a horizontal, two-dimensional bend through which an ideal fluid flows can be approximated:

$$
u_{\theta}=\frac{k}{r}
$$

where r is the radius of curvature and k is a constant. Show that the volumetric flow rate through the bend, Q, is related to the pressure difference, $\Delta p=p_{\mathrm{B}}-p_{\mathrm{A}}$, and fluid density, ρ, via:

$$
Q=C \sqrt{\frac{\Delta p}{\rho}}
$$

where C is a constant that depends upon the bend geometry.

SOLUTION:

Apply Euler's equation across the streamlines:

$$
\begin{equation*}
\frac{d p}{d r}=\rho \frac{u_{\theta}^{2}}{r} \tag{1}
\end{equation*}
$$

Substitute for the given velocity profile and solve the differential equation.

$$
\begin{align*}
& \frac{d p}{d r}=\rho \frac{k^{2}}{r^{3}} \tag{2}\\
& \int_{p=p_{A}}^{p=p_{B}} d p=\rho k^{2} \int_{r=a}^{r=b} \frac{d r}{r^{3}} \tag{3}\\
& \Delta p=p_{B}-p_{A}=-\frac{\rho k^{2}}{2}\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right)=\frac{\rho k^{2}}{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) \tag{4}
\end{align*}
$$

Relate k to the volumetric flow rate using the velocity profile.

$$
\begin{align*}
& Q=\int_{r=a}^{r=b} u_{\theta} d r=k \int_{r=a}^{r=b} \frac{d r}{r}=k \ln \left(\frac{b}{a}\right) \tag{5}\\
& \therefore k=\frac{Q}{\ln \left(\frac{b}{a}\right)} \tag{6}
\end{align*}
$$

Substitute Eqn. (6) into Eqn. (4) and simplify.

$$
\begin{align*}
& \Delta p=\frac{\rho}{2}\left[\frac{Q}{\ln \left(\frac{b}{a}\right)}\right]^{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) \tag{7}\\
& \therefore Q=\frac{\sqrt{2} \ln \left(\frac{b}{a}\right)}{\sqrt{\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)} \sqrt{\frac{\Delta p}{\rho}}=C \sqrt{\frac{\Delta p}{\rho}}}
\end{align*}
$$

Consider the steady, inviscid flow through a smooth, constant diameter pipe bend as shown in the figure below.
Gravity may be neglected in this problem. The fluid velocity in the bend is inversely proportional to the radius, i.e., $u_{\theta}=\frac{k}{r}$,
where k is a constant.

How does the pressure difference, $p_{B}-p_{A}$, change as the radius R_{B} increases (R_{A} remains constant)?
A. increases
B. decreases
C. remains the same
D. not enough information is given
E. it's twice the change in the momentum flux

SOLUTION:

Simplify the radial component of Euler's equation.

$$
\begin{align*}
& \frac{d p}{d r}=\rho \frac{u_{\theta}^{2}}{r} \Rightarrow \frac{d p}{d r}=\rho \frac{(k / r)^{2}}{r} \tag{1}\\
& \int_{p=p_{A}}^{r=p_{B}} d p=\left.\rho k^{2} \int_{r=R_{A}}^{r=R_{B}} \frac{d r}{r^{3}} \Rightarrow p\right|_{p_{A}} ^{p_{B}}=\rho k^{2}\left(-\frac{1}{2} \frac{1}{r^{2}}\right)_{R_{A}}^{R_{B}} \tag{2}\\
& p_{B}-p_{A}=-\frac{1}{2} \rho k^{2}\left(\frac{1}{R_{B}^{2}}-\frac{1}{R_{A}^{2}}\right) \Rightarrow p_{B}-p_{A}=\frac{1}{2} \rho k^{2}\left(\frac{1}{R_{A}^{2}}-\frac{1}{R_{B}^{2}}\right) \tag{3}
\end{align*}
$$

Thus, as R_{B} increases, $p_{B}-p_{A}$ increases.

