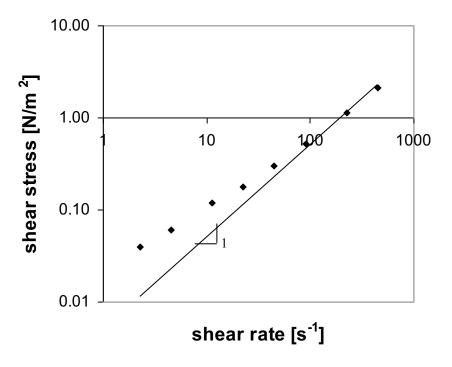
The viscosity of blood is to be determined from measurements of shear stress and shear rate obtained from a small blood sample tested in a suitable viscometer. Based on the data given in the table below, determine if the blood is a Newtonian or a non-Newtonian fluid. Explain how you arrived at your answer.

| data set                         | 1    | 2    | 3     | 4    | 5    | 6    | 7    | 8    |
|----------------------------------|------|------|-------|------|------|------|------|------|
| shear rate [s <sup>-1</sup> ]    | 2.25 | 4.50 | 11.25 | 22.5 | 45.0 | 90.0 | 225  | 450  |
| shear stress [N/m <sup>2</sup> ] | 0.04 | 0.06 | 0.12  | 0.18 | 0.30 | 0.52 | 1.12 | 2.10 |

## SOLUTION:

Plot the ratio of the shear stress to the shear rate to give the apparent dynamic viscosity:


$$\mu_{\rm app} = \frac{\tau}{\left(\frac{du}{dy}\right)}$$

| _ | $(\gamma uy)$                              |        |        |        |        |        |        |        |        |
|---|--------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|   | data set                                   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|   | apparent viscosity, $\mu_{app}$ [kg/(m·s)] | 0.0178 | 0.0133 | 0.0107 | 0.0080 | 0.0067 | 0.0058 | 0.0050 | 0.0047 |

Since the apparent viscosity is decreasing with increasing shear rate (increasing data set number), blood is <u>not Newtonian</u>, but is instead shear thinning.

Another way to look at the problem:

Plot the data on a log-log scale as shown below. Note that if  $y = x^n$  (*i.e.* a power law function), then  $\ln(y) = n\ln(x)$  (*i.e.* the function is a straight line with slope *n* on a log-log scale). Hence, if blood is Newtonian, then the shear rate-shear stress data plotted on a log-log scale will have a slope of one since  $\tau \propto \frac{du}{dy}$  for a Newtonian fluid.



The slope of the blood data is not equal to one indicating that blood <u>is non-Newtonian</u>. In fact, since the slope is less than one over most of the range of shear rate, blood is shear thinning.