An engineer makes five "identical" pressure measurements in an experiment. The computer display on which the pressure measurement is displayed has a least count of 0.01 psi ; however, the pressure values fluctuate over a wider range of values as indicated in the following table containing the pressure measurement readings.

Measurement	1	2	3	4	5
Reading [psi]	$16.21-17.32$	$15.84-16.74$	$16.12-17.20$	$15.92-16.73$	$16.19-17.33$

What pressure and uncertainty should the engineer report?

SOLUTION:

Even though the transducer's least count is 0.01 psi, the uncertainty per measurement is much larger than this based on the range over which the pressures fluctuate.

Measurement	1	2	3	4	5
Reading [psi]	$16.21-17.32$	$15.84-16.74$	$16.12-17.20$	$15.92-16.73$	$16.19-17.33$
Mean [psi]	16.77	16.29	16.66	16.33	16.76
Range [psi]	1.11	0.90	1.08	0.81	1.14

The mean value for the measurements is 16.56 psi and the standard deviation is 0.23 psi . With five Since the number of measurements is small, a Student's t-distribution should be used to give a 95% confidence level in the measurement. With $n=5, t_{0.95}=2.78$. Hence, the measurement with uncertainty is:

$$
\begin{aligned}
& \bar{x} \pm t_{95 \%} \sigma=16.56 \pm(2.78)(0.23) \mathrm{psi} \\
& \therefore \bar{x} \pm t_{95 \%} \sigma=16.56 \pm 0.65 \mathrm{psi}
\end{aligned}
$$

