Using the ruler in the photograph shown below, determine the diameter of the tennis ball including uncertainty. Note that the finest divisions on the ruler are in 1 mm increments.

SOLUTION:

Even though the ruler's divisions are in 1 mm increments, the photograph's resolution is too poor to clearly make out the divisions. A much more reasonable measurement least count is 5 mm since these increments are more easily seen. Using this least count, the left side of the tennis ball, l_{L}, is located at $50.2 \pm 0.25 \mathrm{~cm}$ and the right side, l_{R}, is located at $56.7 \pm 0.25 \mathrm{~cm}$. The diameter, D, is:

$$
\begin{equation*}
D=l_{R}-l_{L}=56.7-50.2 \mathrm{~cm}=6.5 \mathrm{~cm} \tag{1}
\end{equation*}
$$

The absolute uncertainty in the diameter is:

$$
\begin{equation*}
\delta D=\sqrt{\left(\delta D_{l_{R}}\right)^{2}+\left(\delta D_{l_{L}}\right)^{2}}=\sqrt{\left(\frac{\partial D}{\partial l_{R}} \delta l_{R}\right)^{2}+\left(\frac{\partial D}{\partial l_{L}} \delta l_{L}\right)^{2}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial D}{\partial l_{R}}=1 \text { and } \frac{\partial D}{\partial l_{L}}=-1 \tag{3}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\delta D=\sqrt{\left(\delta l_{R}\right)^{2}+\left(\delta l_{L}\right)^{2}}=\sqrt{2(0.25 \mathrm{~cm})^{2}}=0.35 \mathrm{~cm} \tag{4}
\end{equation*}
$$

Thus, the tennis ball diameter, with uncertainty, is:

$$
\begin{equation*}
D=6.5 \pm 0.35 \mathrm{~cm} \tag{5}
\end{equation*}
$$

Note that the International Tennis Federation (the United States Tennis Association is a member of this organization) indicates that a tennis ball should have a diameter between 6.541 and 6.858 cm for Type 1 (fast speed) and Type 2 (medium speed) balls (Type 3 (slow speed) balls are bigger). The measurement given above is within the upper limit, but could potentially be smaller than the allowable size.

Reference

International Tennis Federation, The Rules of Tennis, available at:
http://dps.altdc3.va.twimm.net/usta_master/usta/doc/content/doc_13_4198.pdf
(2005 Dec 15).

