In pneumatic conveying, solid particles such as flour or coal are carried through a duct by a moving air stream. Solids density at any duct location can be measured by passing a laser beam of known intensity, I_{0}, through the duct and measuring the light intensity transmitted to the other side, I. A transmission factor is found using:

$$
T=\frac{I}{I_{0}}=\exp (-K E W) \quad \text { where } 0 \leq T \leq 1
$$

Here W is the width of the duct, K is the solids density, and E is a factor taken as $2.0 \pm 0.4 \mathrm{~kg} / \mathrm{m}^{2}$ for spheroidal particles. Determine how the relative uncertainty in K is related to the relative uncertainties of the other variables. If the transmission factor and duct width can be measured to within $\pm 1 \%$, can the solids density be measured to within 5% ? 10% ? Discuss your answer remembering that T varies from 0 to 1 .

SOLUTION:

Solve for the solids density using the definition of the transmission factor.

$$
\begin{align*}
& T=\exp (-K E W) \\
& K=\frac{-1}{E W} \ln T \tag{1}
\end{align*}
$$

The relative uncertainty in the solids density is given by:

$$
\begin{equation*}
u_{K}=\left[u_{K, E}^{2}+u_{K, W}^{2}+u_{K, T}^{2}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{K, E}=\frac{1}{K} \frac{\partial K}{\partial E} \delta E=\left(\frac{-E W}{\ln T}\right)\left(\frac{\ln T}{E^{2} W}\right) \delta E=-\frac{\delta E}{E}=-u_{E} \tag{3}\\
& u_{K, W}=\frac{1}{K} \frac{\partial K}{\partial W} \delta W=\left(-\frac{E W}{\ln T}\right)\left(\frac{\ln T}{E W^{2}}\right) \delta W=-\frac{\delta W}{W}=-u_{W} \tag{4}\\
& u_{K, T}=\frac{1}{K} \frac{\partial K}{\partial T} \delta T=\left(-\frac{E W}{\ln T}\right)\left(\frac{-1}{E W T}\right) \delta T=\frac{\delta T}{T \ln T}=\frac{u_{T}}{\ln T} \tag{5}
\end{align*}
$$

Substitute into Eqn. (2).

$$
\begin{equation*}
u_{K}=\left[u_{E}^{2}+u_{W}^{2}+\left(\frac{u_{T}}{\ln T}\right)^{2}\right]^{1 / 2} \tag{6}
\end{equation*}
$$

where the relative uncertainties are:

$$
\begin{align*}
& u_{E}=\frac{\delta E}{E}=\frac{0.4}{2.0}=20 \% \tag{7}\\
& u_{W}=1 \% \tag{8}\\
& u_{T}=1 \% \tag{9}
\end{align*}
$$

Recall that $0 \leq T \leq 1$ so that:

$$
\begin{array}{ll}
T=0: \quad \lim _{T \rightarrow 0}(\ln T)=-\infty & \Rightarrow \lim _{T \rightarrow 0}\left(\frac{u_{T}}{\ln T}\right)=0 \\
T=1:\left.\quad \ln T\right|_{T=1}=0 & \Rightarrow \lim _{T \rightarrow 0}\left(u_{K}\right)=20 \% \\
\Rightarrow 20 \% \leq u_{K} \leq \infty & \tag{12}
\end{array}
$$

Hence, it is not possible to measure K to within either 5% or 10%. In fact, it is not possible to measure K to better than 20% relative uncertainty.

