A certain obstruction-type flowmeter is used to measure the flow of air at low velocities. The relation describing the flow rate is:

$$
\dot{m}=C A\left[\frac{2 p_{1}}{R T_{1}}\left(p_{1}-p_{2}\right)\right]^{1 / 2}
$$

where C is an empirical discharge coefficient, A is the flow area, p_{1} and p_{2} are the upstream and downstream pressures, T_{1} is the upstream temperature, and R is the gas constant for air.

Calculate the relative uncertainty in the mass flow rate for the following conditions:
$C=0.92 \pm 0.005$ (from calibration data)
$p_{1}=25 \pm 0.5 \mathrm{psia}$
$T_{1}=530 \pm 2{ }^{\circ} \mathrm{R}$
$\Delta p=p_{1}-p_{2}=1.4 \pm 0.005 \mathrm{psia}$
$A=1.0 \pm 0.001 \mathrm{in}^{2}$
What factors contribute the most to the uncertainty in the mass flow rate?

SOLUTION:

The relative uncertainty in the mass flow rate is given by:

$$
\begin{equation*}
u_{\dot{m}}=\left[u_{\dot{m}, C}^{2}+u_{\dot{m}, A}^{2}+u_{\dot{m}, p_{1}}^{2}+u_{\dot{m}, T_{1}}^{2}+u_{\dot{m}, \Delta p}^{2}\right]^{1 / 2} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{\dot{m}, C}=\frac{1}{\dot{m}} \frac{\partial \dot{m}}{\partial C} \delta C=\frac{\delta C}{C}=u_{C} \tag{2}\\
& u_{\dot{m}, A}=\frac{1}{\dot{m}} \frac{\partial \dot{m}}{\partial A} \delta A=\frac{\delta A}{A}=u_{A} \tag{3}\\
& u_{\dot{m}, p_{1}}=\frac{1}{\dot{m}} \frac{\partial \dot{m}}{\partial p_{1}} \delta p_{1}=\frac{1}{2} \frac{\delta p_{1}}{p_{1}}=\frac{1}{2} u_{p_{1}} \tag{4}\\
& u_{\dot{m}, T_{1}}=\frac{1}{\dot{m}} \frac{\partial \dot{m}}{\partial T_{1}} \delta T_{1}=-\frac{1}{2} \frac{\delta T_{1}}{T_{1}}=-\frac{1}{2} u_{T_{1}} \tag{5}\\
& u_{\dot{m}, \Delta p}=\frac{1}{\dot{m}} \frac{\partial \dot{m}}{\partial \Delta p} \delta(\Delta p)=\frac{1}{2} \frac{\delta(\Delta p)}{\Delta p}=\frac{1}{2} u_{\Delta p} \tag{6}
\end{align*}
$$

Note that the there is negligible uncertainty in the gas constant R since it is presumed to be known to a high degree of accuracy.

Substitute into Eqn. (1).

$$
\begin{equation*}
u_{\dot{m}}=\left[u_{C}^{2}+u_{A}^{2}+\frac{1}{4} u_{p_{1}}^{2}+\frac{1}{4} u_{T_{1}}^{2}+\frac{1}{4} u_{\Delta p}^{2}\right]^{1 / 2} \tag{7}
\end{equation*}
$$

where the relative uncertainties are:

$$
\begin{align*}
& u_{C}=\frac{\delta C}{C}=\frac{0.005}{0.92}=0.54 \% \tag{8}\\
& u_{A}=\frac{\delta A}{A}=\frac{0.001 \mathrm{in}^{2}}{1.0 \mathrm{in}^{2}}=0.10 \% \tag{9}\\
& u_{p_{1}}=\frac{\delta p_{1}}{p_{1}}=\frac{0.5 \mathrm{psia}}{25 \mathrm{psia}}=2.0 \% \tag{10}\\
& u_{T_{1}}=\frac{\delta T_{1}}{T_{1}}=\frac{2 \mathrm{R}}{530 \mathrm{R}}=0.38 \% \tag{11}\\
& u_{\Delta p}=\frac{\delta(\Delta p)}{\Delta p}=\frac{0.005 \mathrm{psia}}{1.4 \mathrm{psia}}=0.36 \% \tag{12}\\
& \Rightarrow u_{\dot{m}}=1.2 \%
\end{align*}
$$

Examine the contributions of each term on the right hand side of Eqn. (7) to determine which uncertainty has the greatest influence on the uncertainty in \dot{m}.

$$
\begin{aligned}
& u_{C}^{2}=\left(5.4 * 10^{-3}\right)^{2}=2.9 * 10^{-5} \\
& u_{A}^{2}=\left(1.0 * 10^{-3}\right)^{2}=1.0 * 10^{-6} \\
& \frac{1}{4} u_{p_{1}}^{2}=\frac{1}{4}\left(2.0 * 10^{-2}\right)^{2}=1.0 * 10^{-4} \\
& \frac{1}{4} u_{T_{1}}^{2}=\frac{1}{4}\left(3.8 * 10^{-3}\right)^{2}=3.6 * 10^{-6} \\
& \frac{1}{4} u_{\Delta p}^{2}=\frac{1}{4}\left(3.6 * 10^{-3}\right)^{2}=3.2 * 10^{-6}
\end{aligned}
$$

The uncertainty in the p_{1} measurement contributes the most to the uncertainty in \dot{m}.

