The rigid, L-shaped gate shown in the figure can rotate about the hinge and rests against the rigid support at point A. What is the minimum horizontal force, F required to hold the gate closed if its width is $w=3 \mathrm{~m}$ and the lengths are $h=4 \mathrm{~m}$ and $l=2 \mathrm{~m}$? The height of the free surface above the hinge is $H=3 \mathrm{~m}$. You may neglect the weight of the gate and the friction in the hinge. Note that the back of the gate is exposed to the atmosphere.

SOLUTION:

Balance moments about the hinge,

$$
\begin{align*}
& \sum M_{\text {hinge }}=0=\int_{y=H}^{y=H+h} \underbrace{(y-H)}_{\text {moment arm length pressure }} \underbrace{\rho g y y}_{\text {area }}(w d y)+\int_{x=0}^{x=l} \underbrace{x}_{\text {moment arm length }} \underbrace{\rho g(H+h)}_{\text {pressure }} \underbrace{(w d x)}_{\text {area }}-\underbrace{h F}_{\substack{\text { moment due to } \\
\text { applied fore }}}, \tag{1}\\
& \rho g w \int_{y=H}^{y=H+h}(y-H) y d y+\rho g(H+h) w \int_{x=l}^{x=l} x d x-h F=0, \tag{2}\\
& h F=\rho g w\left(\frac{1}{3} y^{3}-\frac{1}{2} H y^{2}\right)_{y=H}^{y=H+h}+\frac{1}{2} \rho g(H+h) w l^{2}, \tag{3}\\
& h F=\rho g w\left\{\left(\frac{1}{3}\left[(H+h)^{3}-H^{3}\right]-\frac{1}{2} H\left[(H+h)^{2}-H^{2}\right]\right)\right\}+\frac{1}{2} \rho g(H+h) w l^{2}, \tag{4}\\
& F=\rho g w\left[\frac{1}{2} H h+\frac{1}{3} h^{2}+\frac{1}{2}(H / h+1) l^{2}\right] . \tag{5}
\end{align*}
$$

Using the given data,

$$
\begin{aligned}
\rho & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
w & =3 \mathrm{~m} \\
H & =3 \mathrm{~m} \\
h & =4 \mathrm{~m} \\
l & =2 \mathrm{~m} \\
\Rightarrow & F=437 \mathrm{kN}
\end{aligned}
$$

