The figure shows a Tainter gate used to control water flow from a dam. The gate radius is $R=20 \mathrm{~m}$, the gate width is $w=35 \mathrm{~m}$, and the water depth is $H=10 \mathrm{~m}$. Determine the force components, magnitude, and line of action of the force that the water exerts on the gate.

SOLUTION:

First determine the force components acting on the gate,

$$
\begin{aligned}
& \boldsymbol{F}=\int_{y=0}^{y=H} p(-d \boldsymbol{A})=\int_{y=0}^{y=H}(\rho g y)\left[-\left(R d \theta w \widehat{\boldsymbol{e}}_{r}\right)\right], \\
& \boldsymbol{F}=\int_{\theta=0}^{\theta=\theta_{M}}(\rho g R \sin \theta)\left(-R d \theta w \widehat{\boldsymbol{e}}_{r}\right),
\end{aligned}
$$

where,

$$
\begin{aligned}
& \sin \theta_{M}=\frac{H}{R}=>\theta_{M}=\sin ^{-1}\left(\frac{H}{R}\right), \\
& \hat{\boldsymbol{e}}_{r}=\cos \theta \hat{\boldsymbol{\imath}}+\sin \theta \hat{\boldsymbol{\jmath}} .
\end{aligned}
$$

$\boldsymbol{F}=-\rho g R^{2} w\left\{\left(\frac{1}{2} \sin ^{2} \theta_{M}\right) \hat{\boldsymbol{\imath}}+\left[\frac{1}{2} \theta_{M}-\frac{1}{4} \sin \left(2 \theta_{M}\right)\right] \hat{\boldsymbol{\jmath}}\right\}$,
$F_{y}=-\frac{1}{2} \rho g R^{2} w\left[\theta_{M}-\frac{1}{2} \sin \left(2 \theta_{M}\right)\right]$,
$F_{x}=-\frac{1}{2} \rho g R^{2} w\left(\frac{H}{R}\right)^{2} \Rightarrow F_{x}=-\frac{1}{2} \rho g H^{2} w$.
$F_{y}=-\frac{1}{2} \rho g R^{2} w\left[\theta_{M}-\frac{1}{2} \sin \left(2 \theta_{M}\right)\right]$ (where θ_{M} is given in Eq. (3)).
Using the given data,

$$
\begin{array}{ll}
\rho & =1000 \mathrm{~kg} / \mathrm{m}^{3}, \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2}, \\
w & =35 \mathrm{~m}, \\
H & =10 \mathrm{~m}, \\
R & =20 \mathrm{~m}, \\
\Rightarrow & F_{x}=-17.2 \mathrm{MN} \text { and } F_{y}=-6.22 \mathrm{MN}
\end{array}
$$

and the force magnitude is $|\mathbf{F}|=18.3 \mathrm{MN}$. The angle from the horizontal is,
$\tan \theta_{C P}=\frac{F_{y}}{F_{x}}$, (refer to the figure to the right)

$$
\begin{equation*}
\theta_{C P}=19.9^{\circ} \tag{12}
\end{equation*}
$$

Note that the resultant force will pass through the center of the circle (the hinge) since the pressure force acts normal to the surface.

