It is often conjectured that the Earth was, at one time, comprised of molten material. If the acceleration due to gravity within this fluid sphere (with a radius of 6440 km) varied linearly with distance, r, from the Earth's center, the acceleration due to gravity at $r=6440 \mathrm{~km}$ was $9.81 \mathrm{~m} / \mathrm{s}^{2}$, and the density of the fluid was uniformly $5600 \mathrm{~kg} / \mathrm{m}^{3}$, determine the gage pressure at the center of this fluid Earth.

SOLUTION:

Since the acceleration due to gravity, g, varies linearly with r :

$$
\begin{equation*}
g=c r \tag{1}
\end{equation*}
$$

where c is a constant. Since $g(r=R=6440 \mathrm{~km})=g_{R}=9.81 \mathrm{~m} / \mathrm{s}^{2}$:

$$
\begin{equation*}
c=\frac{g_{R}}{R}=\frac{9.81 \mathrm{~m} / \mathrm{s}^{2}}{6440 * 10^{3} \mathrm{~m}}=1.523 * 10^{-6} \mathrm{~s}^{-2} \tag{2}
\end{equation*}
$$

From the hydrostatic pressure distribution:

$$
\begin{equation*}
\frac{d p}{d r}=-\rho g \tag{3}
\end{equation*}
$$

Substitute Eq. (1) and solve the resulting differential equation.

$$
\begin{align*}
& \frac{d p}{d r}=-\rho c r \Rightarrow \int_{p=p_{0}}^{p=0} d p=-\rho c \int_{r=0}^{r=R} r d r \tag{4}\\
& \therefore p_{0}=\frac{1}{2} \rho c R^{2} \tag{5}
\end{align*}
$$

Using the given data:

$$
\begin{aligned}
& \rho=5600 \mathrm{~kg} / \mathrm{m}^{3} \\
& c=1.523 * 10^{-6} \mathrm{~s}^{-2} \\
& R=6.440 * 10^{6} \mathrm{~m} \\
& p_{0}=1.769 * 10^{11} \mathrm{~Pa}=1.769 * 10^{6} \mathrm{~atm}
\end{aligned}
$$

