A pump station is used to fill a tank on a hill using water from a lake. The flow rate is $10.5 \mathrm{~L} / \mathrm{s}$ and atmospheric pressure is 101 kPa (abs). The pump is located 4 m above the lake, and the tank surface level is 115 m above the pump. The suction and discharge lines are 10.2 cm diameter commercial steel pipe. The equivalent length of the inlet line between the lake and the pump is 100 m . The total equivalent length between the lake and the tank is 2300 m , including all fittings, bends, screens, and valves. The overall efficiency of the pump and motor set is 70\%.

water density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
water dynamic viscosity $=1^{*} 10^{-3} \mathrm{~Pa} . \mathrm{s}$
water vapor pressure $=1820 \mathrm{~Pa}$ (abs)

What is the net positive suction head available for this pump?

SOLUTION:

Apply the Extended Bernoulli Equation between the lake surface (1) and the pump inlet (2).

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{1}-H_{L}+H_{S} \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\rho & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\mu & =1^{*} 10^{-3} \mathrm{Pa.s} \\
p_{V} & =1820 \mathrm{~Pa}(\mathrm{abs}) \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
p_{1} & =p_{\text {atm }}=101 \mathrm{kPa}(\mathrm{abs}) \\
V_{1} & \approx 0 \\
z_{2}-z_{1} & =4 \mathrm{~m} \\
H_{S} & =0 \text { (Point } 2 \text { is located upstream of the pump.) } \\
D & =0.102 \mathrm{~m} \\
Q & =10.5 \mathrm{~L} / \mathrm{s}=0.0105 \mathrm{~m}^{3} / \mathrm{s} \\
V_{2} & =Q /\left(\pi / 4 D^{2}\right)=1.28 \mathrm{~m} / \mathrm{s} \\
\operatorname{Re}_{D} & =\rho V_{2} D / \mu=131,000 \\
\alpha_{2} & \approx 1(\text { turbulent flow }) \\
\varepsilon & =0.045^{*} 10^{-3} \mathrm{~m}(\text { commercial steel }) \\
H_{L} & =f\left(\frac{L_{e}}{D}\right) \frac{\bar{V}_{2}^{2}}{2 g}=1.61 \mathrm{~m} \tag{4}
\end{array}
$$

where $\operatorname{Re}_{D}=131,000$ and $\varepsilon / D=0.0004 \Rightarrow f=0.0195$ (from the Moody chart)

$$
\begin{equation*}
\text { and } L_{e}=100 \mathrm{~m} \tag{5}
\end{equation*}
$$

Re-arrange Eqn. (1) to solve for the NPSHA:
NPSHA $=\left(\frac{p}{\rho g}+\frac{\bar{V}^{2}}{2 g}\right)_{S}-\frac{p_{V}}{\rho g}=\frac{p_{\text {atm }}-p_{V}}{\rho g}+z_{1}-z_{2}-H_{L}$
\therefore NPSHA $=4.5 \mathrm{~m}$

