Data measured during tests of a centrifugal pump at 3500 rpm are given in the table below:

Parameter	Inlet Section	Outlet Section
gage pressure, $p[\mathrm{kPa}]$	85.2	412
elevation above datum, $z[\mathrm{~m}]$	1.25	2.75
avg speed of flow, $V[\mathrm{~m} / \mathrm{s}]$	2.35	3.62

The flow rate is $11.5 \mathrm{~m}^{3} / \mathrm{hr}$ and the torque applied to the pump shaft is $3.68 \mathrm{~N} \cdot \mathrm{~m}$. Evaluate the total heads at the pump inlet and outlet, the hydraulic power input to the fluid, and the pump efficiency. Specify the electric motor size needed to drive the pump. If the electric motor efficiency is 85%, calculate the electric power requirement.

Data measured during tests of a centrifugal pump at 3500 rpm are given in the table below:

Parameter	Inlet Section	Outlet Section
gage pressure, $p[\mathrm{kPa}]$	85.2	412
elevation above datum, $z[\mathrm{~m}]$	1.25	2.75
avg speed of flow, $V[\mathrm{~m} / \mathrm{s}]$	2.35	3.62

The flow rate is $11.5 \mathrm{~m}^{3} / \mathrm{hr}$ and the torque applied to the pump shaft is $3.68 \mathrm{~N} \cdot \mathrm{~m}$. Evaluate the total dynamic heads at the pump inlet and outlet, the hydraulic power input to the fluid, and the pump efficiency. Specify the electric motor size needed to drive the pump. If the electric motor efficiency is 85%, calculate the electric power requirement.

Solution:

$$
\therefore \dot{\bar{W}}_{\substack{\text { fluid }}}=1100 \mathrm{~W}
$$

$$
\begin{aligned}
& \eta=\frac{T_{\text {onfluid }}}{\dot{W}_{\text {shaft }}}=\frac{1100 \mathrm{w}}{(=\omega T)}=\frac{1100 \mathrm{~W}}{1350 \mathrm{~W}} \\
& =\eta=0.81 \Rightarrow\left(\frac{2 \pi \mathrm{rad}}{\left.\mathrm{rof}^{\mathrm{m}}\right)}\left(\frac{\mathrm{min}}{60 \mathrm{sec}}\right)(3.68 \mathrm{~N} \cdot \mathrm{~m})\right.
\end{aligned}
$$

$$
\bar{T}_{\text {required }}=1350 \omega\left(\frac{h p}{746 w}\right)=1.8 \mathrm{hp}
$$

- If motor is 85 of efficient, then
we reed to supply the motor

$$
\begin{aligned}
& H_{\text {inlet }}=\left(\frac{p}{\rho g}+k \frac{\bar{v}^{2}}{2 g}+z\right)_{\text {inset }}=\frac{85.2 \times 10^{3} p_{6}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}+\frac{(2.35 \mathrm{~N} / \mathrm{s})^{2}}{2\left(9.81^{\left.\mathrm{m} / \mathrm{s}^{2}\right)}+1.25 \mathrm{~m}\right.} \\
& \therefore H_{\text {inlet }}=10.2 \mu \\
& H_{\text {outlet }}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{\text {outlet }}=\frac{412 \times 10^{3} \mathrm{P}_{2}}{\left(1000 \times \mathrm{s} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}+\frac{(3.62 \mathrm{r} / \mathrm{s})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}+2.75 \mathrm{~m} \\
& \therefore H_{\text {outlet }}=45.4 \mathrm{~m}
\end{aligned}
$$

