Water is to be pumped from one large open tank to a second large open tank. The pipe diameter throughout is 6 in . and the total length of the pipe between the pipe entrance and exit is 200 ft . Minor loss coefficients for the entrance, exit, and the elbow are shown on the figure and the friction factor can be assumed constant and equal to 0.02 . A certain centrifugal pump having the performance characteristics shown is suggested as a good pump for this flow system.
a. With this pump, what would be the flow rate between the tanks?
b. Do you think this pump would be a good choice?

SOLUTION:

Apply the extended Bernoulli's equation from point 1 to point 2.

where

$$
p_{2}=p_{1}=p_{\mathrm{atm}} \quad(\text { free surface })
$$

$\bar{V}_{2} \approx \bar{V}_{1} \approx 0 \quad$ (large tanks)
$z_{2}-z_{1}=H$
$H_{L}=\frac{\bar{V}^{2}}{2 g}\left[f\left(\frac{L}{D}\right)+K_{\text {entrance }}+K_{\text {exit }}+K_{\text {elbow }}\right]$ (where \bar{V} is the mean velocity in the pipe)
Note that the mean pipe velocity can be expressed in terms of the volumetric flow rate.

$$
\bar{V}=\frac{Q}{\pi D^{2} / 4}
$$

Substitute and simplify.

$$
\begin{equation*}
H_{S}=H+\frac{8 Q^{2}}{\pi^{2} g D^{4}}\left[f\left(\frac{L}{D}\right)+K_{\text {entrance }}+K_{\text {exit }}+K_{\text {elbow }}\right] \tag{3}
\end{equation*}
$$

For the given problem:

$$
\begin{array}{lll}
H & =10 \mathrm{ft} \\
g & =32.2 \mathrm{ft} / \mathrm{s}^{2} \\
f & =0.02 \\
D & =6 \mathrm{in}=0.5 \mathrm{ft} \\
L & =200 \mathrm{ft} \\
K_{\text {entrance }} & =0.5 & \text { (Note: } \left.K_{\text {major }}=f(L / D)=8.0\right)
\end{array}
$$

$$
K_{\text {exit }}=1.0
$$

$$
K_{\text {elbow }}=1.5
$$

$$
\begin{equation*}
\Rightarrow \quad H_{S}=\left(10+4.43 Q^{2}\right) \mathrm{ft} \quad \text { Note that }[Q]=\mathrm{ft}^{3} / \mathrm{s} \tag{4}
\end{equation*}
$$

This is the head that must be added to the fluid by the pump in order to move the fluid at the volumetric flow rate Q.

With $[Q]=$ gpm, Eqn. (4) becomes:

$$
\begin{equation*}
H_{S}=\left(10+2.25 * 10^{-5} Q^{2}\right) \mathrm{ft} \quad \text { Note that }[Q]=\mathrm{gpm} . \tag{5}
\end{equation*}
$$

Plot Eqn. (5) on the pump performance curve to determine the operating point.

From the figure we observe that the operating point occurs at:

$$
Q \approx 1600 \mathrm{gpm}
$$

corresponding to a head rise and efficiency of

$$
\begin{gathered}
H \approx 67 \mathrm{ft} \\
\eta \approx 84 \%
\end{gathered}
$$

The operating efficiency is close to the optimal efficiency of 86% so this is a good pump to use.
The power required to operate this pump is,

$$
\begin{aligned}
& \dot{W}=\frac{\rho Q g H}{\eta}=\frac{\left(62.4 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}\right)\left(1600 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{\mathrm{min}}{60 \mathrm{~s}}\right)\left(\frac{\mathrm{ft}^{3}}{7.48 \mathrm{gal}}\right)(66.5 \mathrm{ft})\left(\frac{\mathrm{hp}}{550 \mathrm{ft.b}_{\mathrm{f}} / \mathrm{s}}\right)}{0.84} \\
& \dot{W}=32.0 \mathrm{hp}
\end{aligned}
$$

