A small centrifugal pump, when tested at 2875 rpm with water, delivered a flowrate of 252 gpm and a head of 138 ft at its best efficiency point (efficiency is 76%). Determine the specific speed of the pump at this test condition. Sketch the impeller shape you expect. Compute the required power input to the pump.

SOLUTION:

The dimensional specific speed is given by:

$$
N_{s d}=\frac{\omega(\mathrm{rpm}) \sqrt{Q(\mathrm{gpm})}}{[H(\mathrm{ft})]^{3 / 4}}
$$

Using the given data:
$N_{s d}=1130 \mathrm{rpm} \cdot \mathrm{gpm}^{1 / 2} / \mathrm{ft}^{3 / 4}$
The dimensionless specific speed is:

$$
\begin{aligned}
& N_{s}=\frac{N_{s d}}{2733 \frac{\mathrm{rpm} \cdot \mathrm{gpm}^{1 / 2}}{\mathrm{ft}^{3 / 4}}} \\
& N_{s}=0.414
\end{aligned}
$$

The expected impeller shape is radial as shown in the figure below.

(Figure from Munson, B.R., Young, D.F., and Okiishi, T.H., Fundamentals of Fluid Mechanics, $3^{\text {rd }}$ ed., Wiley.)

The power input to the pump is given by:

$$
\dot{W}_{\text {shaft }}=\dot{W}_{\text {fluid }} / \eta_{\mathrm{P}}
$$

where

$$
\begin{aligned}
& \dot{W}_{\text {fluid }}=\dot{m} g H=\rho Q g H \quad\left(\text { Note: } 1 \mathrm{ft}^{3}=7.48 \mathrm{gal}, 1 \mathrm{hp}=550 \mathrm{lb}_{\mathrm{f}} \mathrm{ft} / \mathrm{s}, \text { and } 1 \mathrm{lb} \mathrm{~b}_{\mathrm{f}}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2} .\right) \\
& \dot{W}_{\text {fluid }}=8.80 \mathrm{hp} \\
& \dot{W}_{\text {shaft }}=11.6 \mathrm{hp}
\end{aligned}
$$

