Data measured during tests of a centrifugal pump at 3500 rpm are given in the table below:

Parameter	Inlet Section	Outlet Section
gage pressure, $p[\mathrm{kPa}]$	95.2	412
elevation above datum, $z[\mathrm{~m}]$	1.25	2.75
avg speed of flow, $V[\mathrm{~m} / \mathrm{s}]$	2.35	3.62

The working fluid is water. The flow rate is $11.5 \mathrm{~m}^{3} / \mathrm{hr}$ and the torque applied to the pump shaft is 3.68 $\mathrm{N} \cdot \mathrm{m}$. Evaluate the head rise across the pump, the hydraulic power input to the fluid, and the pump efficiency. If the electric motor efficiency is 85%, calculate the electric power requirement.

SOLUTION:

First determine the total heads at the inlet and outlet to the pump. The total head is given by:

$$
H=\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z
$$

Using the given data (and noting that $D=[Q /(\pi / 4 V)]^{1 / 2}$ and $\operatorname{Re}=V D / v$ so that $\operatorname{Re}_{\text {inlet }}=9.78 \mathrm{e} 4$ and $\operatorname{Re}_{\text {outlet }}=$ $1.21 \mathrm{e} 5 \Rightarrow \alpha_{\text {inlet }} \approx \alpha_{\text {outlet }} \approx 1$) and using absolute pressures when calculating the head:
$H_{\text {inlet }}=21.6 \mathrm{~m}$
$H_{\text {outlet }}=55.7 \mathrm{~m}$
$\Delta H=34.1 \mathrm{~m}$

The hydraulic power input to the fluid is given by:

$$
\begin{aligned}
& \dot{W}_{\text {fluid }}=\dot{m} g\left(H_{\text {outlet }}-H_{\text {inlet }}\right) \\
& \dot{W}_{\text {fluid }}=1.07 \mathrm{~kW}
\end{aligned}
$$

The power required to drive the pump is:

$$
\begin{aligned}
& \dot{W}_{\text {shaft }}=T \omega \\
& \dot{W}_{\text {shaft }}=1.35 \mathrm{~kW}
\end{aligned}
$$

The efficiency of the pump is given by:
$\eta_{\text {pump }}=\frac{\dot{W}_{\text {fluid }}}{\dot{W}_{\text {shaft }}}$
$\eta_{\text {pump }}=79.4 \%$

The electric power required is:

$$
\begin{aligned}
& \dot{W}_{\substack{\text { required } \\
\text { for motor }}}=\dot{W}_{\text {shaft }} / \eta_{\text {motor }} \\
& \dot{W}_{\begin{array}{c}
\text { required } \\
\text { for motor }
\end{array}}=1.59 \mathrm{~kW} \\
& \hline
\end{aligned}
$$

