A centrifugal pump with a 12 in . diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in . diameter. Determine the expected flowrate, head, and input power if the pump speed remains the same.

SOLUTION:
Since the pump speed remains the same and assuming geometrically similar pumps, the pump scaling laws are,

$$
\frac{Q_{1}}{Q_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{3} \quad \frac{H_{1}}{H_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{2} \quad \frac{\dot{W}_{1}}{\dot{W}_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{5}
$$

Using the given parameters,
$Q_{1}=3200 \mathrm{gpm}$,
$D_{1}=12 \mathrm{in}$,
$D_{2}=10 \mathrm{in}$,
$H_{1}=60 \mathrm{ft}$,
$\dot{W}_{1}=60 \mathrm{hp}$,
$Q_{2}=1850 \mathrm{gpm}$
$H_{2}=41.7 \mathrm{ft}$
$\dot{W}_{2}=24.1 \mathrm{hp}$

If the empirical (and more accurate) scaling laws are used,

$$
\begin{array}{ll}
\frac{Q_{1}}{Q_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{2} \quad \frac{H_{1}}{H_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{2} & \frac{\dot{W}_{1}}{\dot{W}_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{4} \\
Q_{2} & =2220 \mathrm{gpm} \\
H_{2} & =41.7 \mathrm{ft} \\
\dot{W}_{2} & =28.9 \mathrm{hp}
\end{array}
$$

