A centrifugal pump with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the expected flowrate, head, and input power if the pump speed remains the same.

SOLUTION:

Since the pump speed remains the same and assuming geometrically similar pumps, the pump scaling laws are, $(D_1)^3 = (D_2)^2 = \dot{W}_1 = (D_2)^5$

$$\frac{Q_1}{Q_2} = \left(\frac{D_1}{D_2}\right)^3 \qquad \qquad \frac{H_1}{H_2} = \left(\frac{D_1}{D_2}\right)^2 \qquad \qquad \frac{\dot{W}_1}{\dot{W}_2} = \left(\frac{D_1}{D_2}\right)^2$$

Using the given parameters,

Q_1	=	3200 gpm,	
D_1	=	12 in,	
D_2	=	10 in,	
H_1	=	60 ft,	
$\dot{W_1}$	=	60 hp,	
	Q_2	=	1850 gpm
	H_2	=	41.7 ft
	$\dot{W_2}$	=	24.1 hp

If the empirical (and more accurate) scaling laws are used, $(D_{1})^{2}$

$$\frac{Q_1}{Q_2} = \left(\frac{D_1}{D_2}\right)^2 \qquad \qquad \frac{H_1}{H_2} = \left(\frac{D_1}{D_2}\right)^2 \qquad \qquad \frac{\dot{W}_1}{\dot{W}_2} = \left(\frac{D_1}{D_2}\right)$$
$$\frac{Q_2}{H_2} = 2220 \text{ gpm}$$
$$\frac{H_2}{H_2} = 41.7 \text{ ft}$$
$$\dot{W}_2 = 28.9 \text{ hp}$$