When fluid with a specific weight of $50 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{3}$ flows with a flow rate of $2.0 \mathrm{ft}^{3} / \mathrm{s}$ in a 6 in . pipeline, the frictional stress is 0.5 psf .
a. Calculate the head lost per foot of pipe (in $\mathrm{ft} / \mathrm{ft}$).
b. How much power is lost per foot of pipe (in $\mathrm{hp} / \mathrm{ft}$)?

SOLUTION:
The (major) head loss is,
$H_{L}=f\left(\frac{L}{D}\right) \frac{\bar{V}^{2}}{2 g} \Rightarrow \frac{H_{L}}{L}=f\left(\frac{1}{D}\right) \frac{\bar{V}^{2}}{2 g}$,
where,

$$
\begin{align*}
& f=\frac{4 \tau_{w}}{\frac{1}{2} \rho \bar{V}^{2}} \tag{2}\\
& \bar{V}=\frac{Q}{\frac{\pi}{4} D^{2}} \tag{3}
\end{align*}
$$

Using the given data,

$$
\begin{aligned}
& Q=2.0 \mathrm{ft}^{3} / \mathrm{s}, \\
& D=6 \mathrm{in} .=0.5 \mathrm{ft}, \\
& =>\bar{V}=10.19 \mathrm{ft} / \mathrm{s}, \\
& \rho g=50 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{3}=>\rho=50 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\left(\text { Note: } 1 \mathrm{lb}_{\mathrm{f}}=32.2 \mathrm{lb} \mathrm{~m} . \mathrm{ft}^{2} / \mathrm{s}^{2} .\right), \\
& \tau_{w}=0.5 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}, \\
& \Rightarrow \mathrm{f}=0.0248, \\
& \Rightarrow H_{\mathrm{L}} / L=0.08 .
\end{aligned}
$$

The power lost is,

$$
\begin{equation*}
H_{L}=\frac{\dot{W}_{L}}{\rho Q g} \Rightarrow \dot{W}_{L} / L=\rho Q g H_{L} / L . \tag{4}
\end{equation*}
$$

Using the given data,
$\dot{W}_{L} / L=8.0 \mathrm{lb}_{\mathrm{f}} / \mathrm{s}=0.0145 \mathrm{hp} / \mathrm{ft} . \quad$ (Note: $1 \mathrm{hp}=550 \mathrm{lb} . \mathrm{ft} / \mathrm{s}$.)

