At the inlet to a constant diameter section of the Alaskan pipeline, the pressure is 8.5 MPa (gage) and the elevation is 45 m . At the outlet the elevation is 115 m . The head loss in this section of pipeline is $6.9 \mathrm{~kJ} / \mathrm{kg}$. Assume the oil has a specific gravity of 0.9. Calculate the outlet gage pressure.

SOLUTION:
Apply the Extended Bernoulli Equation from one end of the tube to the other,

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{1}-H_{L, 12}+H_{S, 12} \tag{1}
\end{equation*}
$$

where,

$$
p_{1}=8.5 \mathrm{MPa} \text { (gage), }
$$

$\left(\alpha \frac{\bar{v}^{2}}{2 g}\right)_{2}=\left(\alpha \frac{\bar{v}^{2}}{2 g}\right)_{1}$
(the mass flow rate and pipe diameter are constant; assume turbulent flow at both sections since the we're dealing with a large pipe diameter (it's the Alaskan pipeline, after all),

$$
\begin{aligned}
& z_{2}-z_{1}=115 \mathrm{~m}-45 \mathrm{~m}=70 \mathrm{~m} \\
& h_{L, 12}=6.9 \mathrm{~kJ} / \mathrm{kg} \Rightarrow H_{L, 12}=h_{L, 12} / g=703.3 \mathrm{~m} \\
& H_{S, 12}=0
\end{aligned}
$$

Substitute and solve for the outlet pressure,

$$
\begin{equation*}
\frac{p_{2}}{\rho g}=\frac{p_{1}}{\rho g}+\left(z_{1}-z_{2}\right)-H_{L, 12} . \tag{2}
\end{equation*}
$$

Using the given data,

$$
\begin{aligned}
& \rho=900 \mathrm{~kg} / \mathrm{m}^{3}\left(\mathrm{SG}_{\text {oil }}=0.9\right), \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \\
& p_{1}=8.5 \mathrm{MPa} \text { (gage) }, \\
& z_{1}-z_{2}=-70 \mathrm{~m}, \\
& H_{L, 12}=703.3 \mathrm{~m}, \\
& \Rightarrow p_{2}=1.67 \mathrm{MPa} \text { (gage) }
\end{aligned}
$$

