Water flows at $10 \mathrm{~L} / \mathrm{min}$ through a horizontal 15 mm diameter tube. The pressure drop along a 20 m length of tube is 85 kPa . Calculate the head loss in meters.

SOLUTION:
Apply the Extended Bernoulli Equation from one end of the tube to the other,

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{1}-H_{L, 12}+H_{S, 12} \tag{1}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \Delta p=p_{2}-p_{1}=-85 \mathrm{kPa} \\
& \left(\alpha \frac{\bar{V}^{2}}{2 g}\right)_{2}=\left(\alpha \frac{\bar{V}^{2}}{2 g}\right)_{1} \text { (the mass flow rate and pipe diameter are constant) }
\end{aligned}
$$

The flow is turbulent at both locations: $\operatorname{Re}_{D}=\frac{\bar{V} D}{v}=\frac{4 Q}{\pi D v}=7860$ so $\alpha_{2} \approx \alpha_{1} \approx 1\left(v=1.8^{*} 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$.
$z_{2}=z_{1}$,
$H_{S, 12}=0$.
Substitute and solve for the head loss,

$$
\begin{equation*}
\frac{\Delta p}{\rho g}=-H_{L, 12} \Rightarrow H_{L, 12}=-\frac{\Delta p}{\rho g} . \tag{2}
\end{equation*}
$$

Using the given data,
$\Delta p=-85 \mathrm{kPa}$,
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$,
$\Rightarrow H_{L, 12}=8.66 \mathrm{~m}$

