A hot tub sits on a deck as shown in the figure below. A homeowner plans to fill the hot tub with water from a 1.91 $\mathrm{cm}(0.75 \mathrm{in}$.) diameter, $7.62 \mathrm{~m}(25 \mathrm{ft})$ length of old garden hose attached to an outdoor spigot (aka faucet) located underneath the deck. The hose has an internal roughness of $0.5 \mathrm{~mm}\left(1.97^{*} 10^{-2} \mathrm{in}\right.$.) and the gage water pressure just upstream of the spigot valve is 379 kPa (55 psig).

The minor losses due to the bends in the hose are much smaller than the minor loss due to the valve, which has a loss coefficient of 2 .

Determine the volumetric flow rate of water into the hot tub. Clearly state and justify all significant assumptions.

SOLUTION:

Apply the Extended Bernoulli Equation from 1 to 2.

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{1}-H_{L}+H_{S} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{1, g}=3.79^{*} 10^{3} \mathrm{~Pa} \text { and } p_{2, g}=0 \tag{2}\\
& \bar{V}_{1}=\bar{V}_{h} \text { and } \bar{V}_{2} \approx 0 \tag{3}\\
& z_{2}-z_{1}=\Delta z=3.05 \mathrm{~m} \tag{4}\\
& H_{L}=\left[f\left(\frac{L}{D}\right)+K_{\text {valve }}+K_{\text {exit }}+K_{\text {bends }}\right] \frac{\bar{V}_{h}^{2}}{2 g} \tag{5}\\
& H_{S}=0 \tag{6}
\end{align*}
$$

Assume the flow in the hose is fully turbulent so that,

$$
\begin{equation*}
\alpha_{1} \approx 1 \tag{7}
\end{equation*}
$$

and the friction factor is solely a function of the relative roughness,

$$
\begin{equation*}
\frac{e}{D}=\frac{0.5 * 10^{-3} \mathrm{~m}}{1.91 * 10^{-2} \mathrm{~m}}=2.62 * 10^{-2} \tag{8}
\end{equation*}
$$

Using the Moody diagram, the friction factor is,

$$
\begin{equation*}
f \approx 0.054 \tag{9}
\end{equation*}
$$

Substitute into Eq. (1) and solve for the average water speed in the hose.

$$
\begin{equation*}
\Delta z=\frac{p_{1, g}}{\rho g}+\frac{\bar{V}_{h}^{2}}{2 g}-\left[f\left(\frac{L}{D}\right)+K_{\mathrm{valve}}+K_{\text {exit }}+K_{\text {bends }}\right] \frac{\bar{V}_{h}^{2}}{2 g} \tag{10}
\end{equation*}
$$

Note that the major loss coefficient of,

$$
\begin{equation*}
K_{\mathrm{major}}=f\left(\frac{L}{D}\right)=21.65 \tag{11}
\end{equation*}
$$

is larger than the valve and exit losses (recall that from the problem statement, $K_{\text {bends }} \ll K_{\text {valve }}$, and thus the bend losses may be neglected), with $K_{\text {valve }} / K_{\text {major }}=0.09$ and $K_{\text {exit }} / K_{\text {major }}=0.05$. We should retain these minor losses since they are not small enough to be neglected.

Solving Eq. (10) for the hose average velocity gives,

$$
\begin{equation*}
\bar{V}_{h}=\sqrt{\frac{2 g\left(\Delta z-\frac{p_{1, g}}{\rho g}\right)}{1-f\left(\frac{L}{D}\right)-K_{\mathrm{valve}}-K_{\mathrm{exit}}}} \Rightarrow \bar{V}_{h}=5.4 \mathrm{~m} / \mathrm{s} \tag{12}
\end{equation*}
$$

The volumetric flow rate is,

$$
\begin{equation*}
Q=\bar{V}_{h} \frac{\pi}{4} D^{2} \Rightarrow Q=1.6^{*} 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \tag{13}
\end{equation*}
$$

Verify that the flow is indeed in the fully turbulent zone.

$$
\begin{equation*}
\operatorname{Re}_{D}=\frac{\bar{V}_{h} D}{v}=\frac{(5.4 \mathrm{~m} / \mathrm{s})\left(1.91 * 10^{-2} \mathrm{~m}\right)}{1.0 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=1.0 * 10^{5} \tag{14}
\end{equation*}
$$

This value of the Reynolds number is in the fully turbulent zone, so the assumption of fully turbulent flow was a good one.

