Consider the pipe system shown below in which water (with a density of $1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}$ and a dynamic viscosity of $1.3 \mathrm{E}-3 \mathrm{~Pa} \cdot \mathrm{~s}$) flows from the tank A to tank B. If the required flow rate is $1.0 \mathrm{E}-2 \mathrm{~m}^{3} / \mathrm{s}$, what is the required gage pressure in tank A ?

SOLUTION:

5.0 cm diameter commercial steel

Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the pipe leading into tank B (point 2).

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{1}-H_{L, 12}+H_{S, 12} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{1}=p_{A}=? \text { and } p_{2}=p_{B}=2.8 \mathrm{E} 5 \mathrm{~Pa} \text { (gage) (given) } \\
& \bar{V}_{1} \approx 0 \quad(\text { large tank }) \quad \bar{V}_{2}=\bar{V} \quad \alpha_{2} \approx 1 \quad \text { (Assume turbulent flow.) } \\
& z_{1}=6.0 \mathrm{E} 0 \mathrm{~m} \text { and } z_{2}=1.5 \mathrm{E} 1 \mathrm{~m} \text { (given) } \\
& \left.H_{S, 12}=0 \text { (no fluid machinery between points } 1 \text { and } 2\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
H_{L, 12}=f\left(\frac{L}{D}\right) \frac{\bar{V}^{2}}{2 g}+K_{\substack{\text { re-entrant } \\
\text { inlet }}} \frac{\bar{V}^{2}}{2 g}+K_{\substack{\text { gate open valve }}} \frac{\bar{V}^{2}}{2 g}+2 K_{90 \text { threaded }} \frac{\bar{V}^{2}}{2 g} \\
H_{L, 12}=\left[f\left(\frac{L}{D}\right)+K_{\substack{\text { re-entrant } \\
\text { inlet }}}+K_{\substack{1 / 2 \text { open } \\
\text { gate valve }}}+2 K_{90 \text { threaded }}^{\text {elbow }}\right] \tag{2}
\end{array}\right] \frac{\bar{V}^{2}}{2 g}
$$

(Note that there are no exit losses at point 2 since no mixing occurs there.)
The mean velocity in the pipe is determined from the volumetric flow rate and the pipe area.

$$
\bar{V}=\frac{Q}{\frac{\pi}{4} D^{2}}
$$

Using the given data:

$$
\bar{V}=\frac{1.0 \mathrm{E}-2 \mathrm{~m}^{3} / \mathrm{s}}{\frac{\pi}{4}(5.0 \mathrm{E}-2 \mathrm{~m})^{2}}=5.1 \mathrm{E} 0 \mathrm{~m} / \mathrm{s}
$$

The friction factor, f, is determined from the Moody chart using the Reynolds number in the pipe, Re, and the relative roughness, ε / D.

$$
\begin{aligned}
& \mathrm{Re}=\frac{\rho \bar{V} D}{\mu}=\frac{\left(1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}\right)(5.1 \mathrm{E} 0 \mathrm{~m} / \mathrm{s})(5.0 \mathrm{E}-2 \mathrm{~m})}{(1.3 \mathrm{E}-3 \mathrm{~Pa} \cdot \mathrm{~s})}=2.0 \mathrm{E} 5 \quad \text { (Turbulent flow assumption ok.) } \\
& \frac{\varepsilon}{D}=\frac{(4.5 \mathrm{E}-5 \mathrm{~m})}{(5.0 \mathrm{E}-2 \mathrm{~m})}=9.0 \mathrm{E}-4 \\
& f=2.1 \mathrm{E}-2
\end{aligned}
$$

Hence, the major loss coefficient for the system is:

$$
K_{\text {major }}=f\left(\frac{L}{D}\right)=(2.1 E-2)\left(\frac{4.0 \mathrm{E} 1 \mathrm{~m}}{5.0 \mathrm{E}-2 \mathrm{~m}}\right)=1.7 \mathrm{E} 1
$$

The minor loss coefficients are found from minor loss tables to be:

$$
\begin{aligned}
& K_{\text {re-entrant }}^{\text {inlet }} \\
& K_{\substack{\text { half open } \\
\text { gate valve }}}=8.0 \mathrm{E}-1 \\
& K_{\substack{90 \text { threaded } \\
\text { elbow }}}=1.5 \mathrm{E} 0
\end{aligned}
$$

Using the given data, the total head loss (from Eqn. (2)) is:

$$
\begin{aligned}
& H_{L, 12}=\left[(2.1 E-2)\left(\frac{4.0 \mathrm{E} 1 \mathrm{~m}}{5.0 \mathrm{E}-2 \mathrm{~m}}\right)+8.0 \mathrm{E}-1+2.1 \mathrm{E} 0+2(1.5 \mathrm{E} 0)\right] \frac{(5.1 \mathrm{E} 0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.8 \mathrm{E} 0 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& \therefore H_{L, 12}=3.0 \mathrm{E} 1 \mathrm{~m}
\end{aligned}
$$

Re-arranging Eqn. (1) to solve for p_{1} gives:

$$
\begin{aligned}
p_{A} & =p_{B}+\frac{1}{2} \rho \bar{V}^{2}+\rho g\left(z_{2}-z_{1}+H_{L, 12}\right) \\
& =(2.8 \mathrm{E} 5 \mathrm{~Pa})+\frac{1}{2}\left(1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}\right)(9.5 \mathrm{E} 0 \mathrm{~m} / \mathrm{s})^{2}+\left(1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{E} 0 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{E} 1 \mathrm{~m}-6.0 \mathrm{E} 0 \mathrm{~m}+3.0 \mathrm{E} 1 \mathrm{~m})
\end{aligned}
$$

$$
p_{A}=6.8 \mathrm{E} 5 \mathrm{~Pa}
$$

Now let's solve the problem using points 2 ' and $2^{\prime \prime}$ as shown in the figure below.

Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the stream at the surface of the free jet (point 2').

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{2^{\prime}}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{1}-H_{L, 12^{\prime}}+H_{S, 12^{\prime}} \tag{3}
\end{equation*}
$$

where

$$
p_{1}=p_{A}=? \text { and } p_{2^{\prime}}=p_{B}=2.8 \mathrm{E} 5 \mathrm{~Pa} \text { (gage) (given) }
$$

$$
\bar{V}_{1} \approx 0 \quad(\text { large tank })
$$

$$
\bar{V}_{2^{\prime}}^{2}=\bar{V}_{2}^{2}+2 g(1 \mathrm{~m}) \quad \text { (using Bernoulli's Eqn applied from the end of the pipe to the surface of tank B) }
$$

$$
\bar{V}_{2^{\prime}}=6.7 \mathrm{E} 0 \mathrm{~m} / \mathrm{s}
$$

$\alpha_{2^{\prime}} \approx 1$ (Assume turbulent flow.)
$z_{1}=6.0 \mathrm{E} 0 \mathrm{~m}$ and $z_{2^{\prime}}=1.4 \mathrm{El} \mathrm{m}$ (given)
$H_{S, 12^{\prime}}=0$ (no fluid machinery between points 1 and 2)

$$
\begin{align*}
& H_{L, 12^{\prime}}=f\left(\frac{L}{D}\right) \frac{\bar{V}_{2}^{2}}{2 g}+K_{\substack{\text { re-entrant } \\
\text { inlet }}} \frac{\bar{V}_{2}^{2}}{2 g}+K_{\substack{1 / 2 \text { open } \\
\text { gate valve }}} \frac{\bar{V}_{2}^{2}}{2 g}+2 K_{90^{\circ} \text { threaded }}^{\text {elbow }} 1 \\
& H_{L, 12^{\prime}}=\left[f\left(\frac{L}{D}\right)+\bar{V}_{\substack{\text { re-entrant } \\
\text { inlet }}}^{2 g}+K_{\begin{array}{c}
1 / 2 \text { open } \\
\text { gate valve }
\end{array}}^{K_{90^{\circ} \text { threaded }}^{\text {elbow }}}\right] \frac{\bar{V}_{2}^{2}}{2 g} \tag{4}
\end{align*}
$$

(Note that there are no exit losses from point 2 to point 2' since the kinetic energy in the stream hasn't been dissipated.)

Using the same data as in the previous solution, except for the velocity at 2^{\prime} and the elevation at 2^{\prime},

$$
\begin{aligned}
p_{A} & =p_{B}+\frac{1}{2} \rho \bar{V}_{2^{\prime}}^{2}+\rho g\left(z_{2^{\prime}}-z_{1}+H_{L, 12^{\prime}}\right) \\
& =(2.8 \mathrm{E} 5 \mathrm{~Pa})+\frac{1}{2}\left(1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}\right)(6.7 \mathrm{E} 0 \mathrm{~m} / \mathrm{s})^{2}+\left(1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{E} 0 \mathrm{~m} / \mathrm{s}^{2}\right)(1.4 \mathrm{E} 1 \mathrm{~m}-6.0 \mathrm{E} 0 \mathrm{~m}+3.0 \mathrm{E} 1 \mathrm{~m})
\end{aligned}
$$

$p_{A}=6.8 \mathrm{E} 5 \mathrm{~Pa}$ (Same answer as found previously!)

Now apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the surface of the tank (point 2'').

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{2^{\prime \prime}}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{V}^{2}}{2 g}+z\right)_{1}-H_{L, 12^{\prime \prime}}+H_{S, 12^{\prime \prime}} \tag{5}
\end{equation*}
$$

where
$p_{1}=p_{A}=$? and $p_{2^{\prime}}=p_{B}=2.8 \mathrm{E} 5 \mathrm{~Pa}$ (gage) (given)
$\bar{V}_{1} \approx 0 \quad$ (large tank)
$\bar{V}_{2^{\prime \prime}} \approx 0 \quad$ (surface of large tank)
$z_{1}=6.0 \mathrm{E} 0 \mathrm{~m}$ and $z_{2^{\prime \prime}}=1.4 \mathrm{E} 1 \mathrm{~m}$ (given)
$H_{S, 12^{\prime \prime}}=0 \quad$ (no fluid machinery between points 1 and 2)

$$
\begin{align*}
& H_{L, 12^{\prime \prime}}=f\left(\frac{L}{D}\right) \frac{\bar{V}_{2}^{2}}{2 g}+K_{\text {re-entrant }} \frac{\bar{V}_{2}^{2}}{2 g}+K_{\substack{\text { inlet open }}} \frac{\bar{V}_{2}^{2}}{2 g}+2 K_{90^{\circ} \text { threaded valve }} \frac{\bar{V}_{2}^{2}}{2 g}+K_{\text {exit }} \frac{\bar{V}_{2^{\prime}}^{2}}{2 g} \\
& H_{L, 12^{\prime \prime}}=\left[f\left(\frac{L}{D}\right)+K_{\substack{\text { re-entrant } \\
\text { inlet }}}+K_{\begin{array}{c}
1 / 2 \text { open } \\
\text { gate valve }
\end{array}}+2 K_{\substack{90^{\circ} \text { threaded } \\
\text { elbow }}}\right] \frac{\bar{V}_{2}^{2}}{2 g}+K_{\text {exit }} \frac{\bar{V}_{2^{\prime}}^{2}}{2 g} \tag{6}
\end{align*}
$$

(Note that the kinetic energy in the stream is dissipated when going from point 2^{\prime} to point $2^{\prime \prime}$.
Thus, the correct velocity to use in the velocity head term is the velocity at 2^{\prime}.)
Using the same data as in the previous solution, except for the velocity at 2^{\prime} and the elevation at 2^{\prime},

$$
\begin{aligned}
& p_{A}=p_{B}+\rho g\left(z_{2^{\prime \prime}}-z_{1}+H_{L, 12^{\prime \prime}}\right) \\
&=(2.8 \mathrm{E} 5 \mathrm{~Pa})+\left(1.0 \mathrm{E} 3 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{E} 0 \mathrm{~m} / \mathrm{s}^{2}\right)(1.4 \mathrm{E} 1 \mathrm{~m}-6.0 \mathrm{E} 0 \mathrm{~m}+3.2 \mathrm{E} 1 \mathrm{~m}) \\
& p_{A}=6.8 \mathrm{E} 5 \mathrm{~Pa} \\
&\text { (Same answer as found previously! })
\end{aligned}
$$

