A hypodermic needle, with an inside diameter of 0.1 mm and a length of 25 mm is used to inject saline solution with a dynamic viscosity five times that of water. The plunger diameter is 10 mm and the maximum force that can be exerted by a thumb on the plunger is 45 N . Estimate the volume flow rate of saline that can be produced.

SOLUTION:

For a viscous, laminar, fully developed flow in a circular pipe (Poiseuille flow), the average velocity is

$$
\begin{equation*}
\bar{u}=\frac{d^{2}}{32 \mu}\left(-\frac{d p}{d z}\right) \tag{1}
\end{equation*}
$$

and the volumetric flow rate is:

$$
\begin{equation*}
Q=\bar{u} \frac{\pi d^{2}}{4}=\frac{\pi d^{4}}{128 \mu}\left(-\frac{d p}{d z}\right) \tag{2}
\end{equation*}
$$

The pressure gradient, assuming fully developed flow in the needle, is:

$$
\begin{equation*}
\frac{d p}{d z}=\frac{\Delta p}{L}=\frac{p_{\text {atm }}-p_{\text {plunger }}}{L}=\frac{-p_{\text {plunger,gage }}}{L} \tag{3}
\end{equation*}
$$

where $p_{\text {plunger,gage }}$ is:

$$
\begin{equation*}
p_{\text {plunger,gage }}=\frac{F}{\left(\pi D^{2} / 4\right)} \tag{4}
\end{equation*}
$$

Using the given data:

$$
\begin{array}{ll}
d & =0.1 \mathrm{e}-3 \mathrm{~m} \\
D & =10 \mathrm{e}-3 \mathrm{~m} \\
L & =25 \mathrm{e}-3 \mathrm{~m} \\
F & =45 \mathrm{~N} \\
\mu & =5 \mathrm{e}-3 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s} \\
\Rightarrow & p_{\text {plunger,gage }}=5.73 \mathrm{e} 5 \mathrm{~Pa} \\
\Rightarrow & d p / d z=-2.29 \mathrm{e} 7 \mathrm{~Pa} / \mathrm{m} \\
\Rightarrow & \bar{u}=1.43 \mathrm{~m} / \mathrm{s} \\
\Rightarrow & Q=1.13 \mathrm{e}-8 \mathrm{~m}^{3} / \mathrm{s}=11.3 \mathrm{~mm}^{3} / \mathrm{s}
\end{array}
$$

Check the Reynolds number to verify that the laminar flow assumption is ok.

$$
\begin{align*}
& \operatorname{Re}=\frac{\rho \bar{u} d}{\mu} \quad\left(\text { Use } \rho \approx 1000 \mathrm{~kg} / \mathrm{m}^{3} .\right) \tag{5}\\
& \Rightarrow \quad \operatorname{Re}=28.8<2300 \Rightarrow \text { The laminar flow assumption is justified! }
\end{align*}
$$

