In the water flow system shown, reservoir B has variable elevation, x. Determine the water level in reservoir B so that no water flows into or out of that reservoir. The speed in the 12 in diameter pipe is 10 $\mathrm{ft} / \mathrm{sec}$. Assume the pipes are constructed of cast iron and that the entrances are sharp-edged.

In the water flow system shown, reservoir B has variable elevation, x. Determine the water level in reservoir B so that no water flows into or out of that reservoir. The speed in the 12 in diameter pipe is 10 $\mathrm{ft} / \mathrm{sec}$. Assume the pipes are constructed of cast iron and that the entrances are sharp-edged.

Solution:

- Apply the Extaded Bernoulli Emu from (1) to (2):

$$
\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho s}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{1}-H_{L_{1 \rightarrow 2}}+H_{S_{1} \rightarrow 2}
$$

where $p_{1}=0$ (gage)

$$
\begin{aligned}
& p_{2}=\rho g\left(x-\bar{y}_{2}\right) \quad \text { (gage) } \quad \text { (from hydrostatics) } \\
& \bar{V}_{2}=10 \mathrm{ft} / \mathrm{s} \quad \text { (assume turbulent flow } \Rightarrow \alpha_{2} \approx 1 \text {) } \\
& \bar{V}_{1} \approx 0
\end{aligned}
$$

$$
z_{1}=100 \mathrm{ft}
$$

$$
z_{2}=50 \mathrm{ft}
$$

$$
H_{s_{1 \rightarrow 2}}=0
$$

$$
H_{L 1 \rightarrow 2}=K_{\text {viscous }} \frac{\bar{V}_{2}^{2}}{25}+K_{\text {entrance }} \frac{\bar{V}_{2}^{2}}{2 g}
$$

where $K_{\text {viscus }}=f\left(\frac{L}{D}\right)$
with $f=\frac{0.0195}{(f r o m ~ M o o d y ~ c h o r t) ~}$

$$
\begin{aligned}
& \quad R_{C_{D}}=\frac{\overline{V_{2} D}}{2}=\frac{(10 \mathrm{fH})(1 \mathrm{ft})}{\left(1.08 \times 10^{-5 \mathrm{ft/5}}\right)}=\frac{924,000}{(\text { turbulent } \mathrm{f}(2 \mathrm{w}!)} \\
& \quad \epsilon / D=\frac{0.00085 \mathrm{ft}}{1 \mathrm{ft}}=0.00085 \\
& L_{D}=100 \mathrm{ft} \\
& D=1 \mathrm{ft} \\
& \Rightarrow K_{\text {viscous }}=1.95
\end{aligned}
$$

Solution...

- Substitute and simplify:

$$
\begin{aligned}
& \left(x-z_{2}\right)+\frac{\bar{v}_{2}^{2}}{2 g}+z_{2}=z_{1}-\left(K_{\text {viscors }}+K_{\text {entrance }}\right) \frac{\bar{v}_{2}^{2}}{2 g} \\
& \Rightarrow \underline{x=z_{1}-\left(k_{\text {visous }}+k_{\text {eatrace }}-1\right) \frac{\bar{v}_{2}^{2}}{2 g}}
\end{aligned}
$$

