A liquid with a specific gravity of 0.95 flows steadily at an average velocity of 10 m/s through a horizontal, smooth tube of diameter 5 cm. The fluid pressure is measured at 1 m intervals along the pipe as follows:

<i>x</i> [m]	0	1	2	3	4	5	6				
<i>p</i> [kPa]	304 273		255	240	226	213	200				
Estimate the second could be second in Deliver the Called Second and in a Called Size											

a. Estimate the average wall shear stress, in Pa, in the fully developed region of the pipe.

b. What is the approximate wall shear stress between stations 1 and 2? State any significant assumptions you make.

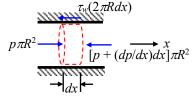
SOLUTION:

First determine the fully developed region by examining the pressure gradient in the pipe. The pressure gradient is constant in the fully developed region.

	<i>x</i> [m]	()		1	2	2	(***	3	Z	1	4	5	6)
	p [kPa]	30)4	273			255 2		40 22		26 213		4	200	
Γ	<i>dp/dx</i> [kPa/m]		-3	1		8	-1	5	-1	4	-1	3	-1	3	

Hence, the fully developed region starts at x = 4 m where the pressure drop remains constant at dp/dx = -13 kPa/m.

To determine the average wall shear stress in the pipe, apply the linear momentum equation in the x direction to the control volume shown in the figure below.



$$\frac{d}{dt} \int_{CV} u_x \rho \, dV + \int_{CS} u_x \left(\rho \mathbf{u}_{rel} \cdot d\mathbf{A} \right) = F_{S,x} + F_{B,x} \,, \tag{1}$$

where,

$$\frac{d}{dt} \int_{CV} u_x \rho \, dV = 0 \quad \text{(steady flow)}, \tag{2}$$

$$F_{B,x} = 0$$
 (no body forces in x-direction), (3)

$$F_{S,x} = p\pi R^2 - \left(p + \frac{dp}{dx}dx\right)\pi R^2 - \overline{\tau}_w (2\pi R dx) = -\frac{dp}{dx}dx\pi R^2 - \overline{\tau}_w (2\pi R dx),$$
(4)

$$\int_{CS} u_x \left(\rho \mathbf{u}_{\rm rel} \cdot d\mathbf{A} \right) = 0 \tag{5}$$

(since for a fully-developed flow, the inlet and outlet velocity profiles are identical)

Substitute and simplify,

$$0 = -\frac{dp}{dx}dx\pi R^2 - \overline{\tau}_w(2\pi R dx), \qquad (6)$$

$$\overline{\tau}_w = -\frac{R}{2}\frac{dp}{dx}.$$
(7)

Using the given data,

R = (0.05/2) m = 0.025 mdp/dx = -13 kPa/m $\Rightarrow \overline{\tau}_w = 163 \text{ Pa}$

For part (b), apply the same linear momentum equation, except that between stations 1 and 2, the velocity profile is not fully developed, hence the momentum flux term in the linear momentum equation (Eq. (5)) won't be zero. However, <u>if the flow is turbulent</u>, as would be expected for such a large velocity and assuming a liquid viscosity similar to that of water, the velocity profile will not change considerably as the flow continues downstream in the entrance region. The reason for this is that a turbulent velocity profile already looks like an average velocity profile due to the radial mixing associated with turbulence. Hence, <u>although the momentum flux term isn't exactly zero</u>, it is expected to be small in comparison to the pressure gradient term. As a result, even in the entrance region the average wall shear stress may be found using,

$$\approx -\frac{R}{2}\frac{dp}{dx}$$

Using the given data between stations 1 and 2,

 $\overline{R} = (0.05/2) \text{ m} = 0.025 \text{ m}$ $\frac{dp/dx}{dp} = -18 \text{ kPa/m}$ $\boxed{\Rightarrow \overline{\tau}_w = 225 \text{ Pa}}$

 $\overline{\tau}_{w}$

(8)